Influence of microcrystalline silicon bottom cell on micromorph tandem solar cell performance

被引:8
作者
Veneri, Paola Delli [1 ]
Aliberti, Pasquale [1 ]
Mercaldo, Lucia V. [1 ]
Usatii, Iurie [1 ]
Privato, Carlo [1 ]
机构
[1] Enea Portici Res Ctr Localita Grantello, I-80055 Naples, Italy
关键词
thin film silicon; solar cells; VHFPECVD; micromoph devices;
D O I
10.1016/j.tsf.2007.12.032
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Micromorph tandem solar cells have been realized growing the intrinsic layers of both amorphous silicon top cell and microcrystalline silicon bottom cell by VHF-PECVD at 100 MHz at low substrate temperature (150 degrees C). The influence of the microcrystalline p-layer on the bottom cell have been studied by growing single microcrystalline devices. For the bottom absorber material two different regimes have been explored by setting the plasma power at 20 W and 33 W. The effect of the structural composition of the microcrystalline absorber layer on the electrical parameters of the device has been investigated. A wider amorphous to crystalline transition region has been found at 33 W, while larger V-OC and FF values have been obtained at 20 W. The highest efficiency (11.1%) has been obtained at 20 W. (c) 2007 Elsevier B.V All rights reserved.
引用
收藏
页码:6979 / 6983
页数:5
相关论文
共 50 条
[41]   Single-Side Heterojunction Solar Cell with Microcrystalline Silicon Oxide Emitter and Diffused Back Surface Field [J].
Yang, Xueliang ;
Chen, Jianhui ;
Liu, Wei ;
Li, Feng ;
Sun, Yun .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2017, 214 (11)
[42]   Influence of dopants in the buffer layer on CZTS solar cell performance [J].
Dakua, Pratap Kumar ;
Panda, Deepak Kumar .
EMERGING MATERIALS RESEARCH, 2022, 11 (04) :478-485
[43]   Fabrication of a n-p-p tunnel junction for a protocrystalline silicon multilayer/amorphous silicon tandem solar cell [J].
Kwak, Joonghwan ;
Kwon, Seong Won ;
Lim, Koeng Su .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2006, 352 (9-20) :1847-1850
[44]   Influence of front electrode and back reflector electrode on the performances of microcrystalline silicon solar cells [J].
Zhang, X. D. ;
Zhao, Y. ;
Gao, Y. T. ;
Zhu, F. ;
Wei, C. C. ;
Chen, X. L. ;
Sun, J. ;
Hou, G. F. ;
Geng, X. H. ;
Xiong, S. Z. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2006, 352 (9-20) :1863-1867
[45]   Design and fabrication of a high performance inorganic tandem solar cell with 11.5% conversion efficiency [J].
Amiri, Omid ;
Mir, Noshin ;
Ansari, Fatemeh ;
Salavati-Niasari, Masoud .
ELECTROCHIMICA ACTA, 2017, 252 :315-321
[46]   Optimisation of monocrystalline silicon solar cell [J].
Lipinski, M ;
Panek, P .
OPTO-ELECTRONICS REVIEW, 2003, 11 (04) :291-295
[47]   Evaluation of the Silicon Solar Cell Parameters [J].
Kharchenko, Valeriy ;
Nikitin, Boris ;
Tikhonov, Pavel ;
Panchenko, Vladimir ;
Vasant, Pandian .
INTELLIGENT COMPUTING & OPTIMIZATION, 2019, 866 :328-336
[48]   Black Silicon for Solar Cell Applications [J].
Kroll, Matthias ;
Otto, Martin ;
Kaesebier, Thomas ;
Fuechsel, Kevin ;
Wehrspohn, Ralf ;
Kley, Ernst-Bernhard ;
Tuennermann, Andreas ;
Pertsch, Thomas .
PHOTONICS FOR SOLAR ENERGY SYSTEMS IV, 2012, 8438
[49]   Solar cell of 6.3% efficiency employing high deposition rate (8 nm/s) microcrystalline silicon photovoltaic layer [J].
Sobajima, Yasushi ;
Nishino, Mitsutoshi ;
Fukumori, Taiga ;
Kurihara, Masanori ;
Higuchi, Takuya ;
Nakano, Shinya ;
Toyama, Toshihiko ;
Okamoto, Hiroaki .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (6-7) :980-983
[50]   Status report: solar cell related research and development using amorphous and microcrystalline silicon deposited by HW(Cat)CVD [J].
Schroeder, B .
THIN SOLID FILMS, 2003, 430 (1-2) :1-6