Ellipsoidal billiards in pseudo-Euclidean spaces and relativistic quadrics

被引:25
作者
Dragovic, Vladimir [1 ,2 ]
Radnovic, Milena [1 ]
机构
[1] Math Inst SANU, Belgrade, Serbia
[2] Univ Lisbon, Math Phys Gmup, P-1699 Lisbon, Portugal
关键词
Confocal quadrics; Poncelet theorem; Periodic billiard trajectories; Minkowski space; Light-like billiard trajectories; Tropic curves; SYSTEMS; PENCILS;
D O I
10.1016/j.aim.2012.06.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the geometry of confocal quadrics in pseudo-Euclidean spaces of arbitrary dimension d and any signature, and related billiard dynamics. The goal is to give a complete description of periodic billiard trajectories within ellipsoids. The novelty of our approach is the introduction of a new discrete combinatorial geometric structure associated with a confocal pencil of quadrics, a colouring in d colours. This is used to decompose quadrics of d + 1 geometric types of a pencil into new relativistic quadrics of d relativistic types. A study of what we term discriminant sets of tropical lines Sigma(+) and Sigma(-) and their singularities provides insight into die related geometry and combinatorics. This yields an analytic criterion describing all periodic billiard trajectories, including light-like trajectories as a case of special interest. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1173 / 1201
页数:29
相关论文
共 20 条
  • [1] [Anonymous], 2006, J MATH SCI-U TOKYO, DOI [DOI 10.1007/S10958-006-0154-2, 10.1007/s10958-006-0154-2]
  • [2] Arnol'd V. I., 1985, MONOGRAPHS MATH, VI, P82
  • [3] Audin M., 1994, EXPO MATH, V12, P193
  • [4] CONFOCAL CONICS IN SPACE-TIME
    BIRKHOFF, G
    MORRIS, R
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1962, 69 (01) : 1 - &
  • [5] Cayley A., 1854, Philosophical Magazine S, V4, P339, DOI [10.1080/14786445408647485, DOI 10.1080/14786445408647485]
  • [6] Cayley A., 1853, Philos. Mag, V6, P99, DOI DOI 10.1080/14786445308647325
  • [7] ELLIPTIC BILLIARD SYSTEMS AND THE FULL PONCELET THEOREM IN N-DIMENSIONS
    CHANG, SJ
    CRESPI, B
    SHI, KJ
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (06) : 2242 - 2256
  • [8] Chino S, 2010, DEMONSTR MATH, V43, P387
  • [9] MATHEMATICAL GENERAL RELATIVITY: A SAMPLER
    Chrusciel, Piotr T.
    Galloway, Gregory J.
    Pollack, Daniel
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 47 (04) : 567 - 638
  • [10] Donghe P. E. I., 1999, Hokkaido Mathematical Journal, V28, P97