A generalised Skolem-Mahler-Lech theorem for affine varieties

被引:42
作者
Bell, Jason R. [1 ]
机构
[1] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2006年 / 73卷
关键词
D O I
10.1112/S002461070602268X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Skolem-Mahler-Lech theorem states that if f (n) is a sequence given by a linear recurrence over a field of characteristic 0, then the set of m, such that f (m) is equal to 0 is the union of a finite number of arithmetic progressions in m >= 0 and a finite set. We prove that if X is a subvariety of an affine variety Y over a field of characteristic 0 and q is a point in Y, and a is an automorphism of Y, then the set of m such that sigma(m) (q) lies in X is a union of a finite number of complete doubly-infinite arithmetic progressions and a finite set. We show that this is a generalisation of the Skolem-Mahler-Lech theorem.
引用
收藏
页码:367 / 379
页数:13
相关论文
共 28 条
[1]  
Allouche J.-P., 2003, Automatic Sequences: Theory, Applications, Generalizations
[2]  
[Anonymous], 1956, P CAMB PHIL SOC
[3]  
[Anonymous], MATH SURVEYS MONOGRA
[4]   FATOU-BIEBERBACH DOMAINS ARISING FROM POLYNOMIAL AUTOMORPHISMS [J].
BEDFORD, E ;
SMILLIE, J .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1991, 40 (02) :789-792
[5]   GENERALIZATION OF THE SKOLEM-MAHLER-LECH THEOREM [J].
BEZIVIN, JP .
QUARTERLY JOURNAL OF MATHEMATICS, 1989, 40 (158) :133-138
[6]  
BEZIVIN JP, 1987, B SOC MATH FR, V115, P227
[7]  
CASSELS JWS, 1986, LONDOM MATH SOC STUD, V3
[8]   GEOMETRY AND RECURRENT SEQUENCES [J].
DENIS, L .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1994, 122 (01) :13-27
[9]  
FORNAESS JE, 1994, NATO ADV SCI INST SE, V439, P131
[10]  
GIZATULLIN MH, 1975, I MATH USSR IZV, V9, P493