Ultrafast sub-30-fs all-optical switching based on gallium phosphide

被引:79
作者
Grinblat, Gustavo [1 ,2 ]
Nielsen, Michael P. [1 ,3 ]
Dichtl, Paul [1 ]
Li, Yi [4 ]
Oulton, Rupert F. [1 ]
Maier, Stefan A. [4 ]
机构
[1] Imperial Coll London, Blackett Lab, Dept Phys, London SW7 2AZ, England
[2] Univ Buenos Aires, Dept Fis, FCEN, IFIBA,CONICET, C1428EGA, Buenos Aires, DF, Argentina
[3] Univ New South Wales, Sch Photovolta & Renewable Energy Engn, Sydney, NSW 2052, Australia
[4] Ludwig Maximilians Univ Munchen, Chair Hybrid Nanosyst, Nanoinst Munchen, Fak Phys, D-80539 Munich, Germany
基金
英国工程与自然科学研究理事会;
关键词
2-PHOTON ABSORPTION; GAP; NONLINEARITY; SI;
D O I
10.1126/sciadv.aaw3262
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gallium phosphide (GaP) is one of the few available materials with strong optical nonlinearity and negligible losses in the visible (lambda > 450 nm) and near-infrared regime. In this work, we demonstrate that a GaP film can generate sub30- fs (full width at half maximum) transmission modulation of up to similar to 70% in the 600- to 1000-nm wavelength range. Nonlinear simulations using parameters measured by the Z-scan approach indicate that the transmission modulation arises from the optical Kerr effect and two-photon absorption. Because of the absence of linear absorption, no slower free-carrier contribution is detected. These findings place GaP as a promising ultrafast material for all-optical switching at modulation speeds of up to 20 THz.
引用
收藏
页数:5
相关论文
共 27 条
[1]   Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material [J].
Alam, M. Zahirul ;
Schulz, Sebastian A. ;
Upham, Jeremy ;
De Leon, Israel ;
Boyd, Robert W. .
NATURE PHOTONICS, 2018, 12 (02) :79-+
[2]   Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region [J].
Alam, M. Zahirul ;
De Leon, Israel ;
Boyd, Robert W. .
SCIENCE, 2016, 352 (6287) :795-797
[3]   DIELECTRIC FUNCTIONS AND OPTICAL-PARAMETERS OF SI, GE, GAP, GAAS, GASB, INP, INAS, AND INSB FROM 1.5 TO 6.0 EV [J].
ASPNES, DE ;
STUDNA, AA .
PHYSICAL REVIEW B, 1983, 27 (02) :985-1009
[4]   Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors [J].
Boitier, F. ;
Godard, A. ;
Rosencher, E. ;
Fabre, C. .
NATURE PHYSICS, 2009, 5 (04) :267-270
[5]  
Boyd R, 2008, NONLINEAR OPTICS, 3RD EDITION, P1
[6]   Bridging the Gap between Dielectric Nanophotonics and the Visible Regime with Effectively Lossless Gallium Phosphide Antennas [J].
Cambiasso, Javier ;
Grinblat, Gustavo ;
Li, Yi ;
Rakovich, Aliaksandra ;
Cortes, Emiliano ;
Maier, Stefan A. .
NANO LETTERS, 2017, 17 (02) :1219-1225
[7]   Extremely nondegenerate two-photon absorption in direct-gap semiconductors [Invited] [J].
Cirloganu, Claudiu M. ;
Padilha, Lazaro A. ;
Fishman, Dmitry A. ;
Webster, Scott ;
Hagan, David J. ;
Van Stryland, Eric W. .
OPTICS EXPRESS, 2011, 19 (23) :22951-22960
[8]   Silicon photonic integration in telecommunications [J].
Doerr, Christopher R. .
FRONTIERS IN PHYSICS, 2015, 3 (AUG)
[9]   Deterministic Coupling of a Single Nitrogen Vacancy Center to a Photonic Crystal Cavity [J].
Englund, Dirk ;
Shields, Brendan ;
Rivoire, Kelley ;
Hatami, Fariba ;
Vuckovic, Jelena ;
Park, Hongkun ;
Lukin, Mikhail D. .
NANO LETTERS, 2010, 10 (10) :3922-3926
[10]   Unity-Order Index Change in Transparent Conducting Oxides at Visible Frequencies [J].
Feigenbaum, Eyal ;
Diest, Kenneth ;
Atwater, Harry A. .
NANO LETTERS, 2010, 10 (06) :2111-2116