Relative Cuntz-Krieger algebras of finitely aligned higher-rank graphs

被引:19
作者
Sims, A [1 ]
机构
[1] Univ Newcastle, Dept Math, Newcastle, NSW 2308, Australia
关键词
graphs as categories; graph algebra; C*-algebra;
D O I
10.1512/iumj.2006.55.2579
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define the relative Cuntz-Krieger algebras associated to finitely aligned higher-rank graphs. We prove versions of the gauge-invariant uniqueness theorem and the Cuntz-Krieger uniqueness theorem for relative Cuntz-Krieger algebras.
引用
收藏
页码:849 / 868
页数:20
相关论文
共 9 条
[1]  
ADJI S, 1994, P AM MATH SOC, V122, P1133
[2]   The ideal structure of the C*-algebras of infinite graphs [J].
Bates, T ;
Hong, JH ;
Raeburn, I ;
Szymanski, W .
ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (04) :1159-1176
[3]   Higher-rank graph C*-algebras:: An inverse semigroup and groupoid approach [J].
Farthing, C ;
Muhly, PS ;
Yeend, T .
SEMIGROUP FORUM, 2005, 71 (02) :159-187
[4]  
Hong JH, 2004, J MATH SOC JPN, V56, P45
[5]  
Kumjian A., 2000, New York Journal of Mathematics, V6, P1
[6]  
MUHLY PS, 2004, DOC MATH, V9, P79
[7]  
Raeburn I, 2005, J OPERAT THEOR, V53, P399
[8]   The C*-algebras of finitely aligned higher-rank graphs [J].
Raeburn, I ;
Sims, A ;
Yeend, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 213 (01) :206-240
[9]   Higher-rank graphs and their C*-algebras [J].
Raeburn, I ;
Sims, A ;
Yeend, T .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2003, 46 :99-115