Improved atomic force microscope infrared spectroscopy for rapid nanometer-scale chemical identification

被引:21
作者
Cho, Hanna [1 ]
Felts, Jonathan R. [1 ]
Yu, Min-Feng [1 ]
Bergman, Lawrence A. [2 ]
Vakakis, Alexander F. [1 ]
King, William P. [1 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61820 USA
[2] Univ Illinois, Dept Aerosp Engn, Urbana, IL 61820 USA
关键词
RESOLUTION; AFM; ABSORPTION; SPECTROMICROSCOPY; VIRUSES; BLENDS; SAMPLE;
D O I
10.1088/0957-4484/24/44/444007
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Atomic force microscope infrared spectroscopy (AFM-IR) can perform IR spectroscopic chemical identification with sub-100 nm spatial resolution, but is relatively slow due to its low signal-to-noise ratio (SNR). In AFM-IR, tunable IR laser light is incident upon a sample, which results in a rise in temperature and thermomechanical expansion of the sample. An AFM tip in contact with the sample senses this nanometer-scale photothermal expansion. The tip motion induces cantilever vibrations, which are measured either in terms of the peak-to-peak amplitude of time-domain data or the integrated magnitude of frequency-domain data. Using a continuous Morlet wavelet transform to the cantilever dynamic response, we show that the cantilever dynamics during AFM-IR vary as a function of both time and frequency. Based on the observed cantilever response, we tailor a time-frequency-domain filter to identify the region of highest vibrational energy. This approach can increase the SNR of the AFM cantilever signal, such that the throughput is increased 32-fold compared to state-of-the art procedures. We further demonstrate significant increases in AFM-IR imaging speed and chemical identification of nanometer- scale domains in polymer films.
引用
收藏
页数:8
相关论文
共 27 条
[1]  
Addison PS, 2002, The illustrated wavelet transform handbook: introductory theory and applications in science
[2]   Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution [J].
Brehm, Markus ;
Taubner, Thomas ;
Hillenbrand, Rainer ;
Keilmann, Fritz .
NANO LETTERS, 2006, 6 (07) :1307-1310
[3]   Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method [J].
Dazzi, A. ;
Prazeres, R. ;
Glotin, F. ;
Ortega, J. M. ;
Al-Sawaftah, M. ;
de Frutos, M. .
ULTRAMICROSCOPY, 2008, 108 (07) :635-641
[4]   Analysis of nano-chemical mapping performed by an AFM-based ("AFMIR") acousto-optic technique [J].
Dazzi, A. ;
Prazeres, R. ;
Glotin, F. ;
Ortega, J. M. .
ULTRAMICROSCOPY, 2007, 107 (12) :1194-1200
[5]   Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor [J].
Dazzi, A ;
Prazeres, R ;
Glotin, E ;
Ortega, JM .
OPTICS LETTERS, 2005, 30 (18) :2388-2390
[6]   Theoretical study of an absorbing sample in infrared near-field spectromicroscopy [J].
Dazzi, A ;
Goumri-Said, S ;
Salomon, L .
OPTICS COMMUNICATIONS, 2004, 235 (4-6) :351-360
[7]   AFM-IR: Combining Atomic Force Microscopy and Infrared Spectroscopy for Nanoscale Chemical Characterization [J].
Dazzi, Alexandre ;
Prater, Craig B. ;
Hu, Qichi ;
Chase, D. Bruce ;
Rabolt, John F. ;
Marcott, Curtis .
APPLIED SPECTROSCOPY, 2012, 66 (12) :1365-1384
[8]   Nanometer-Scale Infrared Spectroscopy of Heterogeneous Polymer Nanostructures Fabricated by Tip-Based Nanofabrication [J].
Felts, Jonathan R. ;
Kjoller, Kevin ;
Lo, Michael ;
Prater, Craig B. ;
King, William P. .
ACS NANO, 2012, 6 (09) :8015-8021
[9]  
Garcia R, 2012, NAT NANOTECHNOL, V7, P217, DOI [10.1038/NNANO.2012.38, 10.1038/nnano.2012.38]
[10]  
Griffiths P. R., 2006, Fourier Transform Infrared Spectrometry