Comparison of hydrophilic PVA/TiO2 and hydrophobic PVDF/TiO2 microfiber webs on the dye pollutant photo-catalyzation

被引:44
作者
Lou, Lihua [1 ,3 ]
Kendall, Ronald J. [2 ]
Ramkumar, Seshadri [1 ]
机构
[1] Texas Tech Univ, Nonwovens & Adv Mat Lab, Lubbock, TX 79409 USA
[2] Texas Tech Univ, Texas Tech Wildlife Toxicol Lab, Lubbock, TX 79409 USA
[3] Virginia Commonwealth Univ, Sch Pharm, 410 North 12th St,Smith Bldg 355, Richmond, VA 23298 USA
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2020年 / 8卷 / 05期
关键词
Electrospinning; Microfiber; Photo-catalyzation; Nanoparticles; Titanium dioxide; N-DOPED TIO2; PHOTOCATALYTIC DEGRADATION; NANOFIBERS; PVDF; SURFACE; FABRICATION;
D O I
10.1016/j.jece.2020.103914
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper, hydrophilic PVA/TiO2 and hydrophobic PVDF/TiO2 microfibrous webs with varied TiO2 concentrations (0 %, 1 %, 3 %, 5 %, 10 %, and 20 %) were produced by the electrospinning technique. UV-vis spectrums were tested to demonstrate the photocatalytic properties of PVA/TiO2 and PVDF/TiO2 webs under visible light. Overall, PVDF/TiO2 exhibits higher Rhodamine B (RhB) decomposition efficiency than PVA/TiO2 samples. Specifically, RhB of around 50 % and 80 % were degraded by 13 d and 49 d for PVA/TiO2 samples with TiO2 of 10 %. RhB of around 50 % and 100 % were degraded at 3 h and 49 d for PVDF/TiO2 samples with TiO2 of 10 % and 20 %. Furthermore, the degradation rate for PVA/TiO2 and PVDF/TiO2 with TiO2 of 10 % is around 0.11 and 0.23. The difference in RhB photodegradation mechanism of PVA/TiO2 and PVDF/TiO2 webs was described and discussed in this paper. Hydrophobic PVDF/TiO2 was suspended in RhB liquid and ensured maximum contact between RhB pollutants and TiO2, whereas PVA/TiO2 completely dissolved in RhB liquid, which decreased the contact area and caused secondary pollution. In conclusion, hydrophobic PVDF/TiO2 webs with TiO2 of 10 % were suitable candidates for RhB photodegradation compared to PVA/TiO2 webs.
引用
收藏
页数:13
相关论文
共 58 条
[1]   Adsorption and photocatalytic degradation of human serum albumin on TiO2 and Ag-TiO2 films [J].
Ahmed, Mukhtar H. ;
Keyes, Tia E. ;
Byrne, John. A. ;
Blackledge, Charles W. ;
Hamilton, Jeremy W. .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2011, 222 (01) :123-131
[2]   Solution-phase grafting of titanium dioxide onto the pore surface of mesoporous silicates: Synthesis and structural characterization [J].
Aronson, BJ ;
Blanford, CF ;
Stein, A .
CHEMISTRY OF MATERIALS, 1997, 9 (12) :2842-2851
[3]   Preparation and Characterization of TiO2-PVDF/PMMA Blend Membranes Using an Alternative Non-Toxic Solvent for UF/MF and Photocatalytic Application [J].
Benhabiles, Ouassila ;
Galiano, Francesco ;
Marino, Tiziana ;
Mahmoudi, Hacene ;
Lounici, Hakim ;
Figoli, Alberto .
MOLECULES, 2019, 24 (04)
[4]   Tuning the optical and photoelectrochemical properties of surface-modified TiO2 [J].
Beranek, Radim ;
Kisch, Horst .
PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2008, 7 (01) :40-48
[5]   Biological methods for textile dye removal from wastewater: A review [J].
Bhatia, Deepika ;
Sharma, Neeta Raj ;
Singh, Joginder ;
Kanwar, Rameshwar S. .
CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2017, 47 (19) :1836-1876
[6]   Vibrational spectrum of PVDF and its interpretation [J].
Bormashenko, Y ;
Pogreb, R ;
Stanevsky, O ;
Bormashenko, E .
POLYMER TESTING, 2004, 23 (07) :791-796
[7]  
Carmen Z., 2012, TEXTILE ORGANIC DYES
[8]   Semiconductor-mediated photodegradation of pollutants under visible-light irradiation [J].
Chen, Chuncheng ;
Ma, Wanhong ;
Zhao, Jincai .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (11) :4206-4219
[9]   CdS-Based photocatalysts [J].
Cheng, Lei ;
Xiang, Quanjun ;
Liao, Yulong ;
Zhang, Huaiwu .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (06) :1362-1391
[10]   In-situ interfacial formation of TiO2/polypyrrole selective layer for improving the separation efficiency towards molecular separation [J].
Cheng, Xiquan ;
Ding, Shangang ;
Guo, Jiang ;
Zhang, Cong ;
Guo, Zhanhu ;
Shao, Lu .
JOURNAL OF MEMBRANE SCIENCE, 2017, 536 :19-27