Convolutional Neural Networks for No-Reference Image Quality Assessment

被引:866
|
作者
Kang, Le [1 ]
Ye, Peng [1 ]
Li, Yi [2 ,3 ]
Doermann, David [1 ]
机构
[1] Univ Maryland, College Pk, MD 20742 USA
[2] NICTA, Canberra, ACT, Australia
[3] Australian Natl Univ, Canberra, ACT, Australia
来源
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2014年
基金
美国国家科学基金会;
关键词
D O I
10.1109/CVPR.2014.224
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work we describe a Convolutional Neural Network (CNN) to accurately predict image quality without a reference image. Taking image patches as input, the CNN works in the spatial domain without using hand-crafted features that are employed by most previous methods. The network consists of one convolutional layer with max and min pooling, two fully connected layers and an output node. Within the network structure, feature learning and regression are integrated into one optimization process, which leads to a more effective model for estimating image quality. This approach achieves state of the art performance on the LIVE dataset and shows excellent generalization ability in cross dataset experiments. Further experiments on images with local distortions demonstrate the local quality estimation ability of our CNN, which is rarely reported in previous literature.
引用
收藏
页码:1733 / 1740
页数:8
相关论文
共 50 条
  • [1] No-reference Image Quality Assessment with Deep Convolutional Neural Networks
    Li, Yuming
    Po, Lai-Man
    Feng, Litong
    Yuan, Fang
    2016 IEEE INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2016, : 685 - 689
  • [2] Evaluating Convolutional Neural Networks for No-Reference Image Quality Assessment
    Apostolidis, Kyriakos D.
    Polyzos, Theodore
    Grigoriadis, Ioannis
    Papakostas, George A.
    2021 4TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INFORMATION SECURITY (ICSPIS), 2021,
  • [3] No-Reference Image Quality Assessment with Convolutional Neural Networks and Decision Fusion
    Varga, Domonkos
    APPLIED SCIENCES-BASEL, 2022, 12 (01):
  • [4] No-reference image quality assessment based on deep convolutional neural networks
    Ravela, Ravi
    Shirvaikar, Mukul
    Grecos, Christos
    REAL-TIME IMAGE PROCESSING AND DEEP LEARNING 2019, 2019, 10996
  • [5] No-Reference Image Quality Assessment via Multibranch Convolutional Neural Networks
    Pan Z.
    Yuan F.
    Wang X.
    Xu L.
    Shao X.
    Kwong S.
    IEEE Transactions on Artificial Intelligence, 2023, 4 (01): : 148 - 160
  • [6] AN ACCURATE DEEP CONVOLUTIONAL NEURAL NETWORKS MODEL FOR NO-REFERENCE IMAGE QUALITY ASSESSMENT
    Bare, Bahetiyaer
    Li, Ke
    Yan, Bo
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2017, : 1356 - 1361
  • [7] Multitask convolutional neural network for no-reference image quality assessment
    Huang, Yuge
    Tian, Xiang
    Chen, Yaowu
    Jiang, Rongxin
    JOURNAL OF ELECTRONIC IMAGING, 2018, 27 (06)
  • [8] No-reference Image Quality Assessment Based on Convolutional Neural Network
    Chen, Yangming
    Jiang, Xiuhua
    2018 IEEE 18TH INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY (ICCT), 2018, : 1251 - 1255
  • [9] In-the-wild No-Reference Image Quality Assessment using Deep Convolutional Neural Networks
    Shahreza, Hatef Otroshi
    Amini, Arash
    Behroozi, Hamid
    2019 5TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS 2019), 2019,
  • [10] No-reference image quality assessment by using convolutional neural networks via object detection
    Cao, Jingchao
    Wu, Wenhui
    Wang, Ran
    Kwong, Sam
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (11) : 3543 - 3554