Frequency Tuning Range Extension in LC-VCOs Using Negative-Capacitance Circuits

被引:30
作者
Wu, Qiyang [1 ]
Quach, Tony K. [2 ]
Mattamana, Aji [2 ]
Elabd, Salma [1 ]
Orlando, Pompei L. [2 ]
Dooley, Steven R. [2 ]
McCue, Jamin J. [1 ]
Creech, Gregory L. [1 ]
Khalil, Waleed [1 ]
机构
[1] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
[2] USAF, Res Lab, Wright Patterson AFB, OH 45433 USA
关键词
LC voltage-controlled oscillators (VCOs) (LC-VCOs); millimeter-wave integrated circuits; negative-capacitance (NC) circuits; wide-tuning-range VCOs; PHASE-LOCKED LOOP; 0.13-MU-M CMOS; TECHNOLOGY; DESIGN;
D O I
10.1109/TCSII.2013.2251939
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present an experimentally validated capacitance cancellation structure to increase the tuning range (TR) of LC voltage-controlled oscillators (VCOs) with minimal phase noise or power impact. The cancellation is based on an ultrawideband differential active negative-capacitance (NC) circuit. An NC scheme suitable for bottom-biased VCOs is analyzed and combined with a CMOS VCO to cancel the fixed capacitance in the LC tank. The NC structure is further modified to be tunable, enabling additional expansion of the VCO TR. By manipulating the quality factor (Q) of the NC tuning varactor pair, a prototype VCO achieves a maximum TR of 27% in a 130-nm technology, while dissipating 13 mA from a 0.9-V supply. The TR is the highest reported at Q-band, covering from 34.5 GHz to 45.4 GHz. Compared to the reference VCO without an NC circuit, the TR is increased by 38%. The measured worst case phase noise is -95 dBc/Hz at 1-MHz offset, and the FOMT is -184.9 dBc/Hz.
引用
收藏
页码:182 / 186
页数:5
相关论文
共 12 条
[1]   A 50-GHz phase-locked loop in 0.13-μm CMOS [J].
Cao, Changhua ;
Ding, Yanping ;
Kenneth, K. O. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2007, 42 (08) :1649-1656
[2]   Millimeter-wave voltage-controlled oscillators in 0.13-μm CMOS technology [J].
Cao, Changhua ;
O, Kenneth K. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2006, 41 (06) :1297-1304
[3]   Design of wide-tuning-range millimeter-wave CMOS VCO with a standing-wave architecture [J].
Chien, Jun-Chau ;
Lu, Liang-Hung .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2007, 42 (09) :1942-1952
[4]   An MOS transistor model for RF IC design valid in all regions of operation [J].
Enz, C .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2002, 50 (01) :342-359
[5]   A low-voltage 40-GHz complementary VCO with 15% frequency tuning range in SOOCMOS technology [J].
Fong, N ;
Kim, J ;
Plouchart, JO ;
Zamdmer, N ;
Liu, DX ;
Wagner, L ;
Plett, C ;
Tarr, G .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2004, 39 (05) :841-846
[6]  
Ismail A, 2003, ISSCC DIG TECH PAP I, V46, P98
[7]   A 23-to-29 GHz transconductor-tuned VCO MMIC in 0.13 μm CMOS [J].
Kwok, KaChun ;
Long, John R. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2007, 42 (12) :2878-2886
[8]   TRANSISTOR NEGATIVE-IMPEDANCE CONVERTERS [J].
LINVILL, JG .
PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1953, 41 (06) :725-729
[9]   A Novel Variable Inductor Using a Bridge Circuit and Its Application to a 5-20 GHz Tunable LC-VCO [J].
Tanabe, Akira ;
Hijioka, Ken'ichiro ;
Nagase, Hirokazu ;
Hayashi, Yoshihiro .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2011, 46 (04) :883-+
[10]   Integration of Current-Reused VCO and Frequency Tripler for 24-GHz Low-Power Phase-Locked Loop Applications [J].
Tsai, Pei-Kang ;
Huang, Tzuen-Hsi .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2012, 59 (04) :199-203