SEMI-SUPERVISED ACTIVE LEARNING FOR URBAN HYPERSPECTRAL IMAGE CLASSIFICATION

被引:8
作者
Dopido, Inmaculada [1 ]
Li, Jun [1 ]
Plaza, Antonio [1 ]
Bioucas-Dias, Jose M.
机构
[1] Univ Extremadura, Dept Technol Comp & Commun, Hyperspectral Comp Lab, E-10071 Caceres, Spain
来源
2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2012年
关键词
Hyperspectral image classification; urban classification; semi-supervised learning; active learning; MULTINOMIAL LOGISTIC-REGRESSION;
D O I
10.1109/IGARSS.2012.6350814
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we develop a new framework for semi-supervised learning which exploits active learning for unlabeled sample selection in hyperspectral data classification. Specifically, we use active learning to select the most informative unlabeled training samples with the ultimate goal of systematically achieving noticeable improvements in classification results with regard to those found by randomly selected training sets of the same size. Our experimental results, conducted with an urban hyperspectral scene collected by the Reflective Optics Spectrographic Imaging Instrument (ROSIS) of the Deutschen Zentrum for Luftund Raumfahrt (DLR, the German Aerospace Agency) over the city of Pavia, Italy, indicate that using active learning for unlabeled sample selection represents an effective and promising strategy in the context of urban hyperspectral data classification.
引用
收藏
页码:1586 / 1589
页数:4
相关论文
共 11 条
[1]  
[Anonymous], 2003, WILEY HOBOKEN
[2]  
Bioucas-Dias J., 2010, IEEE T GEOS IN PRESS
[3]   MULTINOMIAL LOGISTIC-REGRESSION ALGORITHM [J].
BOHNING, D .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1992, 44 (01) :197-200
[4]   A novel transductive SVM for semisupervised classification of remote-sensing images [J].
Bruzzone, Lorenzo ;
Chi, Mingmin ;
Marconcini, Mattia .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (11) :3363-3373
[5]   Kernel-based methods for hyperspectral image classification [J].
Camps-Valls, G ;
Bruzzone, L .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (06) :1351-1362
[6]   IMAGING SPECTROMETRY FOR EARTH REMOTE-SENSING [J].
GOETZ, AFH ;
VANE, G ;
SOLOMON, JE ;
ROCK, BN .
SCIENCE, 1985, 228 (4704) :1147-1153
[7]   Sparse multinomial logistic regression: Fast algorithms and generalization bounds [J].
Krishnapuram, B ;
Carin, L ;
Figueiredo, MAT ;
Hartemink, AJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (06) :957-968
[8]   Semisupervised Hyperspectral Image Segmentation Using Multinomial Logistic Regression With Active Learning [J].
Li, Jun ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (11) :4085-4098
[9]  
Marconcini M., 2006, IEEE GEOSCI REMOTE S, V3, P40
[10]   An active learning approach to hyperspectral data classification [J].
Rajan, Suju ;
Ghosh, Joydeep ;
Crawford, Melba M. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (04) :1231-1242