SEMI-SUPERVISED ACTIVE LEARNING FOR URBAN HYPERSPECTRAL IMAGE CLASSIFICATION

被引:8
|
作者
Dopido, Inmaculada [1 ]
Li, Jun [1 ]
Plaza, Antonio [1 ]
Bioucas-Dias, Jose M.
机构
[1] Univ Extremadura, Dept Technol Comp & Commun, Hyperspectral Comp Lab, E-10071 Caceres, Spain
来源
2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2012年
关键词
Hyperspectral image classification; urban classification; semi-supervised learning; active learning; MULTINOMIAL LOGISTIC-REGRESSION;
D O I
10.1109/IGARSS.2012.6350814
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we develop a new framework for semi-supervised learning which exploits active learning for unlabeled sample selection in hyperspectral data classification. Specifically, we use active learning to select the most informative unlabeled training samples with the ultimate goal of systematically achieving noticeable improvements in classification results with regard to those found by randomly selected training sets of the same size. Our experimental results, conducted with an urban hyperspectral scene collected by the Reflective Optics Spectrographic Imaging Instrument (ROSIS) of the Deutschen Zentrum for Luftund Raumfahrt (DLR, the German Aerospace Agency) over the city of Pavia, Italy, indicate that using active learning for unlabeled sample selection represents an effective and promising strategy in the context of urban hyperspectral data classification.
引用
收藏
页码:1586 / 1589
页数:4
相关论文
共 50 条
  • [1] Combining Semi-Supervised and Active Learning for Hyperspectral Image Classification
    Li, Mingzhi
    Wang, Rui
    Tang, Ke
    2013 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING (CIDM), 2013, : 89 - 94
  • [2] Unified active and semi-supervised learning for hyperspectral image classification
    Wang, Zengmao
    Du, Bo
    GEOINFORMATICA, 2023, 27 (01) : 23 - 38
  • [3] Unified active and semi-supervised learning for hyperspectral image classification
    Zengmao Wang
    Bo Du
    GeoInformatica, 2023, 27 : 23 - 38
  • [4] Improved Active Deep Learning for Semi-Supervised Classification of Hyperspectral Image
    Wang, Qingyan
    Chen, Meng
    Zhang, Junping
    Kang, Shouqiang
    Wang, Yujing
    REMOTE SENSING, 2022, 14 (01)
  • [5] Semi-supervised deep learning for hyperspectral image classification
    Kang, Xudong
    Zhuo, Binbin
    Duan, Puhong
    REMOTE SENSING LETTERS, 2019, 10 (04) : 353 - 362
  • [6] Semi-supervised feature learning for hyperspectral image classification
    Zhang, Pengfei
    Cao, Liujuan
    Wang, Cheng
    Li, Jonathan
    2ND ISPRS INTERNATIONAL CONFERENCE ON COMPUTER VISION IN REMOTE SENSING (CVRS 2015), 2016, 9901
  • [7] Active Semi-Supervised Random Forest for Hyperspectral Image Classification
    Zhang, Youqiang
    Cao, Guo
    Li, Xuesong
    Wang, Bisheng
    Fu, Peng
    REMOTE SENSING, 2019, 11 (24)
  • [8] SEMI-SUPERVISED LEARNING BY DOMAIN ADAPTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Deshpande, Shailesh S.
    Banolia, Chaman
    Balamuralidhar, P.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6009 - 6012
  • [9] Semi-supervised bundle manifold learning for hyperspectral image classification
    Li, Zhi-Min
    Zhang, Jie
    Huang, Hong
    Jiang, Tao
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2015, 23 (05): : 1434 - 1442
  • [10] A novel semi-supervised learning framework for hyperspectral image classification
    Ye, Zhijing
    Li, Hong
    Song, Yalong
    Wang, Jianzhong
    Benediktsson, Jon Atli
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2016, 14 (02)