Effects of historical climate change, habitat connectivity, and vicariance on genetic structure and diversity across the range of the red tree vole (Phenacomys longicaudus) in the Pacific Northwestern United States

被引:95
作者
Miller, MP [1 ]
Bellinger, MR
Forsman, ED
Haig, SM
机构
[1] Utah State Univ, Dept Biol, Logan, UT 84322 USA
[2] USGS, Forest & Rangeland Ecosyst Sci Ctr, Corvallis, OR 97331 USA
[3] US Forest Serv, Pacific NW Res Stn, Corvallis, OR 97331 USA
关键词
interpolation; mitochondrial control region; Phenacomys longicaudus; phylogeography; Pleistocene glaciation; spatial genetic analysis;
D O I
10.1111/j.1365-294X.2005.02765.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phylogeographical analyses conducted in the Pacific Northwestern United States have often revealed concordant patterns of genetic diversity among taxa. These studies demonstrate distinct North/South genetic discontinuities that have been attributed to Pleistocene glaciation. We examined phylogeographical patterns of red tree voles (Phenacomys longicaudus) in western Oregon by analysing mitochondrial control region sequences for 169 individuals from 18 areas across the species' range. Cytochrome b sequences were also analysed from a subset of our samples to confirm the presence of major haplotype groups. Phylogenetic network analyses suggested the presence of two haplotype groups corresponding to northern and southern regions of P. longicaudus' range. Spatial genetic analyses (<smallcapitals>samova</smallcapitals> and Genetic Landscape Shapes) of control region sequences demonstrated a primary genetic discontinuity separating northern and southern sampling areas, while a secondary discontinuity separated northern sampling areas into eastern and western groups divided by the Willamette Valley. The North/South discontinuity likely corresponds to a region of secondary contact between lineages rather than an overt barrier. Although the Cordilleran ice sheet (maximum similar to 12 000 years ago) did not move southward to directly affect the region occupied by P. longicaudus, climate change during glaciation fragmented the forest landscape that it inhabits. Signatures of historical fragmentation were reflected by positive associations between latitude and variables such as Tajima's D and patterns associated with location-specific alleles. Genetic distances between southern sampling areas were smaller, suggesting that forest fragmentation was reduced in southern vs. northern regions.
引用
收藏
页码:145 / 159
页数:15
相关论文
共 59 条
[1]  
Andersen BG, 1994, ICE AGE WORLD INTRO
[2]  
[Anonymous], 1998, J HERED
[3]  
[Anonymous], 2000, AM ANCIENT FORESTS I
[4]  
BALDWIN EM, 1976, GEOLOGY OREGON
[5]   Median-joining networks for inferring intraspecific phylogenies [J].
Bandelt, HJ ;
Forster, P ;
Röhl, A .
MOLECULAR BIOLOGY AND EVOLUTION, 1999, 16 (01) :37-48
[6]  
Bellinger MR, 2005, J MAMMAL, V86, P201
[7]  
Brunsfeld S., 2001, INTEGRATING ECOLOGIC, P319
[8]  
Bury RB, 1999, NAT AREA J, V19, P341
[9]  
CAREY A B, 1989, Natural Areas Journal, V9, P151
[10]   GENETIC-VARIATION IN THOMOMYS-BULBIVORUS, AN ENDEMIC TO THE WILLAMETTE VALLEY, OREGON [J].
CARRAWAY, LN ;
KENNEDY, PK .
JOURNAL OF MAMMALOGY, 1993, 74 (04) :952-962