Convex polarities over ordered fields

被引:3
作者
Stengle, Gilbert [3 ,4 ]
McEnerney, James [1 ]
Robson, Robert [2 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Oregon State Univ, Dept Math, Corvallis, OR 97331 USA
[3] Lehigh Univ, Princeton, NJ 08540 USA
[4] Univ Complutense Madrid, E-28040 Madrid, Spain
关键词
D O I
10.1016/j.jpaa.2009.06.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use tools and methods from real algebraic geometry (spaces of ultrafilters, elimination of quantifiers) to formulate a theory of convexity in K-N over an arbitrary ordered field. By defining certain ideal points (which can be viewed as generalizations of recession cones) we obtain a generalized notion of polar set. These satisfy a form of polar duality that applies to general convex sets and does not reduce to classical duality if K is the field of real numbers. As an application we give a partial classification of total orderings of Artinian local rings and two applications to ordinary convex geometry over the real numbers. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:370 / 379
页数:10
相关论文
共 14 条
[1]  
[Anonymous], 1995, GRADUATE TEXTS MATH
[2]  
[Anonymous], 1970, CONVEXITY OPTIMIZATI
[4]  
BOCHNAK J, 1985, GEOMETRIE ALGEBRIQUE
[5]  
GRUBER PM, 1993, HDB CONVEXITY
[6]  
MCENERNEY J, 1997, REV MATEMATICA S, V10
[7]  
Nagata M., 1962, LOCAL RINGS
[8]  
PRENOWITZ W, 1979, JANTOSCIAK JOIN GEOM
[10]  
Rockafellar R.T., 1969, Convex Analysis