Additive manufactured bipolar plate for high-efficiency hydrogen production in proton exchange membrane electrolyzer cells

被引:82
作者
Yang, Gaoqiang [1 ]
Mo, Jingke [1 ]
Kang, Zhenye [1 ]
List, Frederick A., III [2 ]
Green, Johney B., Jr. [3 ]
Babu, Sudarsanam S. [2 ,4 ]
Zhang, Feng-Yuan [1 ]
机构
[1] Univ Tennessee, Nanodynam & High Efficiency Lab Prop & Power, Dept Mech Aerosp & Biomed Engn, UT Space Inst, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Mfg Demonstrat Facil, Oak Ridge, TN USA
[3] Natl Renewable Energy Lab, Golden, CO USA
[4] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN USA
关键词
Additive manufacturing; Bipolar plate; PEM electrolyzer cell; Hydrogen production; Stainless steel; Selective laser melting; PEM WATER ELECTROLYSIS; FUEL-CELLS; OXYGEN EVOLUTION; PERFORMANCE; TRANSPORT; COATINGS;
D O I
10.1016/j.ijhydene.2017.04.100
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Additive manufacturing (AM) technology is capable of fast and low-cost prototyping from complex 3D digital models. To take advantage of this technology, a stainless steel (SS) plate with parallel flow field served as a combination of a cathode bipolar plate and a current distributor; it was fabricated using selective laser melting (SLM) techniques and investigated in a proton exchange membrane electrolyzer cell (PEMEC) in-situ for the first time. The experimental results show that the PEMEC with an AM SS cathode bipolar plate can achieve an excellent performance for hydrogen production for a voltage of 1.779 V and a current density of 2.0 A/cm(2). The AM SS cathode bipolar plate was also characterized by SEM and EDS, and the results show a uniform elemental distribution across the plate with very limited oxidization. This research demonstrates that AM method could be a route to aid cost-effective and rapid development of PEMECs. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:14734 / 14740
页数:7
相关论文
共 30 条
[1]  
Ayers K., 2012, ECS T, V41, P15, DOI DOI 10.1149/1.3684798
[2]  
Bertuccioli L., 2014, Fuel cells and hydrogen joint undertaking, V114
[3]   A comprehensive review on PEM water electrolysis [J].
Carmo, Marcelo ;
Fritz, David L. ;
Merge, Juergen ;
Stolten, Detlef .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (12) :4901-4934
[4]   3D printed flow plates for the electrolysis of water: an economic and adaptable approach to device manufacture [J].
Chisholm, Greig ;
Kitson, Philip J. ;
Kirkaldy, Niall D. ;
Bloor, Leanne G. ;
Cronin, Leroy .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (09) :3026-3032
[5]   Future CO2 Emissions and Climate Change from Existing Energy Infrastructure [J].
Davis, Steven J. ;
Caldeira, Ken ;
Matthews, H. Damon .
SCIENCE, 2010, 329 (5997) :1330-1333
[6]   Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers [J].
Gago, A. S. ;
Ansar, S. A. ;
Saruhan, B. ;
Schulz, U. ;
Lettenmeier, P. ;
Canas, N. A. ;
Gazdzicki, P. ;
Morawietz, T. ;
Hiesgen, R. ;
Arnold, J. ;
Friedrich, K. A. .
JOURNAL OF POWER SOURCES, 2016, 307 :815-825
[7]   Effects of membrane electrode assembly properties on two-phase transport and performance in proton exchange membrane electrolyzer cells [J].
Han, Bo ;
Mo, Jingke ;
Kang, Zhenye ;
Zhang, Feng-Yuan .
ELECTROCHIMICA ACTA, 2016, 188 :317-326
[8]   Bipolar plate materials development using Fe-based alloys for solid polymer fuel cells [J].
Hornung, R ;
Kappelt, G .
JOURNAL OF POWER SOURCES, 1998, 72 (01) :20-21
[9]   Ultra-low Pt loading for proton exchange membrane fuel cells by catalyst coating technique with ultrasonic spray coating machine [J].
Huang, Tzu-Hsuan ;
Shen, Heng-Li ;
Jao, Ting-Chu ;
Weng, Fang-Bor ;
Su, Ay .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (18) :13872-13879
[10]   Influence of properties of gas diffusion layers on the performance of polymer electrolyte-based unitized reversible fuel cells [J].
Hwang, Chul Min ;
Ishida, Masayoshi ;
Ito, Hiroshi ;
Maeda, Tetsuhiko ;
Nakano, Akihiro ;
Hasegawa, Yasuo ;
Yokoi, Naoto ;
Kato, Atsushi ;
Yoshida, Tetsuya .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (02) :1740-1753