Cellular automata models of chemical systems

被引:16
|
作者
Kier, LB [1 ]
Cheng, CK
Seybold, PG
机构
[1] Virginia Commonwealth Univ, Dept Med Chem, Richmond, VA 23298 USA
[2] Virginia Commonwealth Univ, Dept Math Sci, Richmond, VA 23298 USA
[3] Wright State Univ, Dept Chem, Dayton, OH 45435 USA
关键词
cellular automata; solution phenomena; kinetic models; in silico experiments; dynamic models;
D O I
10.1080/10629360008039116
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper describes the use of kinematic, asynchronous, stochastic cellular automata to model liquid properties, solution phenomena and kinetic phenomena encountered in complex biological systems. Cellular automata models of dynamic phenomena represent in silico experiments designed to assess the effects of competing factors on the physical and chemical properties of solutions and other complex systems. Specific applications include solution behavior, separation of immiscible liquids, micelle formation, diffusion, membrane passage, first- and second-order chemical kinetics, enzyme activity and acid dissociation. Cellular automata is thus considered as providing an exploratory method for the analysis of dynamic phenomena and the discovery and understanding of new, unexpected phenomena.
引用
收藏
页码:79 / 102
页数:24
相关论文
共 50 条
  • [31] Some fractal cellular automata models of seismic faults
    Galvez-Coyt, G.
    Muñoz-Diosdado, A.
    Angulo-Brown, F.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2007, 15 (03) : 207 - 215
  • [32] Imposed and inherent scales in cellular automata models of habitat
    Craig, Peter D.
    ECOLOGICAL MODELLING, 2010, 221 (20) : 2425 - 2434
  • [33] A mathematical method for control problems on cellular automata models
    El Yacoubi, S.
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2008, 39 (05) : 529 - 538
  • [34] Markov cellular automata models for chronic disease progression
    Hawkins, Jane
    Molinek, Donna
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2015, 8 (06)
  • [35] Heterogeneous Dynamics Through Coupling Cellular Automata Models
    Bandini, Stefania
    Vizzari, Giuseppe
    CELLULAR AUTOMATA, ACRI 2016, 2016, 9863 : 387 - 395
  • [36] Identification of excitable media using cellular automata models
    Zhao, Y.
    Billings, S. A.
    Routh, Alexander F.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (01): : 153 - 168
  • [37] Cellular automata and Riccati equation models for diffusion of innovations
    Guseo, Renato
    Guidolin, Mariangela
    STATISTICAL METHODS AND APPLICATIONS, 2008, 17 (03) : 291 - 308
  • [38] Sand piles: From physics to cellular automata models
    Cattaneo, G.
    Comito, M.
    Bianucci, D.
    THEORETICAL COMPUTER SCIENCE, 2012, 436 : 35 - 53
  • [39] On the derivation of approximations to cellular automata models and the assumption of independence
    Davies, K. J.
    Green, J. E. F.
    Bean, N. G.
    Binder, B. J.
    Ross, J. V.
    MATHEMATICAL BIOSCIENCES, 2014, 253 : 63 - 71
  • [40] Towards Cellular Automata Football Models with Mentality Accounting
    Makarenko, Alexander
    Krushinski, Dmitry
    Musienko, Anton
    Goldengorin, Boris
    CELLULAR AUTOMATA, 2010, 6350 : 149 - +