Line-defect calibration for line-scanning projection display

被引:1
|
作者
An, Seungdo [1 ]
Song, Jonghyeong [1 ]
Lapchuk, Anatoliy [1 ,2 ]
Yurlov, Victor [1 ]
Ryu, Seung-Won [1 ]
Kim, Eungju [1 ]
Yun, Sang Kyeong [1 ]
机构
[1] Samsung Electromech Co Ltd, OS Div, SOM R&D & Biz Grp, Suwon 442743, South Korea
[2] Inst Informat Recording NAS Ukraine, UA-03113 Kiev, Ukraine
来源
OPTICS EXPRESS | 2009年 / 17卷 / 19期
关键词
D O I
10.1364/OE.17.016492
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A method of line-defect calibration for line-scanning projection display is developed to accomplish acceptable display uniformity. The line scanning display uses a line modulating imaging and scanning device to construct a two-dimensional image. The inherent line-defects in an imaging device and optical lenses are the most fatal performance-degrading factor that should be overcome to reach the basic display uniformity level. Since the human eye recognizes line defects very easily, a method that perfectly removes line defects is required. Most line imaging devices are diffractive optical devices that require a coherent light source. This particular requirement makes the calibration method of sequential single pixel measurement and correction insufficient to take out the line defects distributed on screen due to optical crosstalk. In this report, we present a calibration method using a recursively converging algorithm that successfully transforms the unacceptable line-defected images into a uniform display image. (C) 2009 Optical Society of America
引用
收藏
页码:16492 / 16504
页数:13
相关论文
共 50 条
  • [21] Accurate modeling of line-defect photonic crystal waveguides
    Sauvan, C
    Lalanne, P
    Rodier, JC
    Hugonin, JP
    Talneau, A
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2003, 15 (09) : 1243 - 1245
  • [22] Line-scanning quasi-confocal fluorescence imaging
    Yang B.
    Liu L.
    Liu Z.-Y.
    Ma S.-H.
    Chong X.-Y.
    He Y.-H.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2010, 18 (05): : 1028 - 1034
  • [23] Nodal line-scanning method for maskless optical lithography
    Johnson, Kenneth C.
    APPLIED OPTICS, 2014, 53 (34) : J7 - J18
  • [24] Pupil Engineering for a Confocal Reflectance Line-Scanning Microscope
    Patel, Yogesh G.
    Rajadhyaksha, Milind
    DiMarzio, Charles A.
    THREE-DIMENSIONAL AND MULTIDIMENSIONAL MICROSCOPY: IMAGE ACQUISITION AND PROCESSING XVIII, 2011, 7904
  • [25] Line-scanning Raman imaging spectroscopy for detection of fingerprints
    Deng, Sunan
    Liu, Le
    Liu, Zhiyi
    Shen, Zhiyuan
    Li, Guohua
    He, Yonghong
    APPLIED OPTICS, 2012, 51 (17) : 3701 - 3706
  • [26] Propagation loss of line-defect photonic crystal slab waveguides
    Kuang, Wan
    Kim, Woo Jun
    Mock, Adam
    O'Brien, John
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2006, 12 (06) : 1183 - 1195
  • [27] Extended aperture line-scanning Hartmann wavefront sensor
    Xu, Hongfeng
    Wu, Jigang
    APPLIED OPTICS, 2021, 60 (12) : 3403 - 3411
  • [28] Photoluminescence Imaging Using Silicon Line-Scanning Cameras
    Mitchell, Bernhard
    Chung, Daniel
    Teal, Anthony
    IEEE JOURNAL OF PHOTOVOLTAICS, 2016, 6 (04): : 967 - 975
  • [29] Line-scanning confocal microendoscope for nuclear morphometry imaging
    Tang, Yubo
    Carns, Jennifer
    Richards-Kortum, Rebecca R.
    JOURNAL OF BIOMEDICAL OPTICS, 2017, 22 (11)
  • [30] Wide field-of-view line-scanning lensless in-line holographic microscope
    Cui, Hanchen
    Xu, Hongfeng
    Wu, Jigang
    OPTICAL ENGINEERING, 2022, 61 (06)