Increase of Lidar-Sun Photometer System Efficiency of Functioning

被引:0
作者
Asadov, H. G.
Mammadova, U. F.
机构
来源
VISNYK NTUU KPI SERIIA-RADIOTEKHNIKA RADIOAPARATOBUDUVANNIA | 2020年 / 83期
关键词
lidar; efficiency; sun photometer; complex; optimization;
D O I
10.20535/RADAP.2020.83.36-40
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The question on evaluation of lidar-sun photometric system efficiency of functioning is researched. Lidar systems both the ground and space designation should pass initial check up and validation of derived data upon ground measurements. Formulation of new criteria of efficiency of functioning of lidar-sun photometric systems keeps its actuality for whole subclass of atmospheric laser sensing systems. Signal-noise low ratio value of received signals, clouds effects and allowed wrong initial estimates of attenuation and scattering factors ratio could lead to negative result. To decrease error of lidar functioning the joint operation of lidar with sun photometer is practized. For complex of remote sensing composed of lidar and sun photometer the criterion of functioning efficiency that is covariation of two functions: (a) reflected signal, depending on distance of sensing and (b) laser irradiation power considered as function of said distance is suggested. The lidar-photometric system should be estimated as effective if covariation of said functions reaches minimum, that is sensing and reflected signals are completely different. The optimization task is formulated using procedure of nonconditional variation optimization upon some limitation condition imposed on searched function of laser power dependence on sensing distance. Solution of optimization task using Euler method make it possible to obtain the optimum type of the function upon which the adopted criterion of efficiency reaches minimum value that is system operates by maximum efficiency.
引用
收藏
页码:36 / 40
页数:5
相关论文
共 14 条
[1]   Current Research in Lidar Technology Used for the Remote Sensing of Atmospheric Aerosols [J].
Comeron, Adolfo ;
Munoz-Porcar, Constantino ;
Rocadenbosch, Francesc ;
Rodriguez-Gomez, Alejandro ;
Sicard, Michael .
SENSORS, 2017, 17 (06)
[2]   Balloonborne lidar for cloud physics studies [J].
Di Donfrancesco, Guido ;
Cairo, Francesco ;
Buontempo, Carlo ;
Adriani, Alberto ;
Viterbini, Maurizio ;
Snels, Marcel ;
Morbidini, Roberto ;
Piccolo, Francesco ;
Cardillo, Francesco ;
Pommereau, Jean-Pierre ;
Garnier, Anne .
APPLIED OPTICS, 2006, 45 (22) :5701-5708
[3]  
El'cgol'ts L. E, 1974, DIFFERENTSIALNYE URA
[4]   LIDAR Developments at Clermont-Ferrand-France for Atmospheric Observation [J].
Freville, Patrick ;
Montoux, Nadege ;
Baray, Jean-Luc ;
Chauvigne, Aurelien ;
Reveret, Francois ;
Hervo, Maxime ;
Dionisi, Davide ;
Payen, Guillaume ;
Sellegri, Karine .
SENSORS, 2015, 15 (02) :3041-3069
[5]   Aerosol Optical Thickness Measurement with Elevation-Scanning Lidar [J].
Ionov, Pavel I. ;
Mollner, Andrew K. .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2015, 32 (07) :1364-1371
[6]   Airborne sun photometer PLASMA: concept, measurements, comparison of aerosol extinction vertical profile with lidar [J].
Karol, Y. ;
Tanre, D. ;
Goloub, P. ;
Vervaerde, C. ;
Balois, J. Y. ;
Blarel, L. ;
Podvin, T. ;
Mortier, A. ;
Chaikovsky, A. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2013, 6 (09) :2383-2389
[7]   Relative humidity vertical profiling using lidar-based synergistic methods in the framework of the Hygra-CD campaign [J].
Labzovskii, Lev D. ;
Papayannis, Alexandros ;
Binietoglou, Ioannis ;
Banks, Robert F. ;
Baldasano, Jose M. ;
Toanca, Florica ;
Tzanis, Chris G. ;
Christodoulakis, John .
ANNALES GEOPHYSICAE, 2018, 36 (01) :213-229
[8]   Towards an automatic lidar cirrus cloud retrieval for climate studies [J].
Larroza, E. G. ;
Nakaema, W. M. ;
Bourayou, R. ;
Hoareau, C. ;
Landulfo, E. ;
Keckhut, P. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2013, 6 (11) :3197-3210
[9]  
Li J., 2008, ACTIVE PASSIVE OPTIC
[10]   Evaluating CALIPSO's 532 nm lidar ratio selection algorithm using AERONET sun photometers in Brazil [J].
Lopes, F. J. S. ;
Landulfo, E. ;
Vaughan, M. A. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2013, 6 (11) :3281-3299