CO as a Probe Molecule to Study Surface Adsorbates during Electrochemical Oxidation of Propene

被引:18
作者
Winiwarter, Anna [1 ,2 ]
Boyd, Michael J. [3 ,4 ]
Scott, Soren B. [1 ,5 ]
Higgins, Drew C. [3 ,4 ,6 ]
Seger, Brian [1 ]
Chorkendorff, Ib [1 ]
Jaramillo, Thomas F. [3 ,4 ]
机构
[1] Tech Univ Denmark, SurfCat, Dept Phys, DK-2800 Lyngby, Denmark
[2] Haldor Topsoe Res Labs, Haldor Topsoes Alle 1, DK-2800 Lyngby, Denmark
[3] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[4] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, Menlo Pk, CA 94025 USA
[5] Spectro Inlets AS, Ole Maaloes Vej 3, DK-2200 Copenhagen, Denmark
[6] McMaster Univ, Dept Chem Engn, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
基金
美国国家科学基金会;
关键词
hydrocarbon oxidation; electrochemistry; IR spectroscopy; mass spectrometry; EC-MS;
D O I
10.1002/celc.202001162
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A major challenge in the electrochemical oxidation of hydrocarbons is understanding the formation of intermediate species, some of which continue to react, while others are non-reactive or poisonous species that block adsorption of further reactants. Herein we investigate the identity and behavior of adsorbates formed during partial oxidation of propene. We employ two techniques: Electrochemistry-Mass Spectrometry (EC-MS) and Attenuated Total Reflection Infrared Spectroscopy (ATR-FTIR). In both cases, we use CO as a probe molecule, to perturb the ad-layer of propene intermediates. In the EC-MS experiments, propene and its intermediates were quantified by triggering their desorption via displacement with CO. We show evidence for at least two distinct classes of propene adsorbates, via CO displacement and electrochemical stripping. A redshift in the nu(C-O) mode was observed, during IR spectroscopy, reflecting the chemical environment arising from strongly bound propene intermediates.
引用
收藏
页码:250 / 256
页数:7
相关论文
共 30 条
[1]   COADSORPTION AND PROMOTER EFFECTS IN THE ADSORPTION OF CO ON SUPPORTED RHODIUM CATALYSTS [J].
ANGEVAARE, PAJM ;
HENDRICKX, HACM ;
PONEC, V .
JOURNAL OF CATALYSIS, 1988, 110 (01) :18-22
[2]  
[Anonymous], 2008, Fuel Cell Catal. A Surf. Sci. Approach
[3]   Elucidation of the reaction pathways of allyl alcohol at polycrystalline palladium electrodes [J].
Arévalo, MC ;
Rodríguez, JL ;
Pastor, E .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2001, 505 (1-2) :62-71
[4]   Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy [J].
Ataka, K ;
Yotsuyanagi, T ;
Osawa, M .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (25) :10664-10672
[5]   Electrochemical CO2 Reduction: A Classification Problem [J].
Bagger, Alexander ;
Ju, Wen ;
Sofia Varela, Ana ;
Strasser, Peter ;
Rossmeisl, Jan .
CHEMPHYSCHEM, 2017, 18 (22) :3266-3273
[6]   Propene oxidation and hydrogenation on a porous platinum electrode in acidic solution [J].
Beltowska-Brzezinska, M ;
Luczak, T ;
Baltruschat, H ;
Müller, U .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (20) :4793-4800
[7]   Trends in the Catalytic Activity of Hydrogen Evolution during CO2 Electroreduction on Transition Metals [J].
Cave, Etosha R. ;
Shi, Chuan ;
Kuhl, Kendra P. ;
Hatsukade, Toni ;
Abram, David N. ;
Hahn, Christopher ;
Chan, Karen ;
Jaramillo, Thomas F. .
ACS CATALYSIS, 2018, 8 (04) :3035-3040
[8]   Spectators Control Selectivity in Surface Chemistry: Acrolein Partial Hydrogenation Over Pd [J].
Dostert, Karl-Heinz ;
O'Brien, Casey P. ;
Ivars-Barcelo, Francisco ;
Schauermann, Swetlana ;
Freund, Hans-Joachim .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (42) :13496-13502
[9]  
Etzkorn W.G., 2009, KIRK OTHMER ENCY CHE, P1