BAYESIAN MODEL COMPARISON AND MODEL AVERAGING FOR SMALL-AREA ESTIMATION

被引:22
作者
Aitkin, Murray [1 ]
Liu, Charles C. [1 ]
Chadwick, Tom [2 ]
机构
[1] Univ Melbourne, Sch Behav Sci, Melbourne, Vic 3010, Australia
[2] Newcastle Univ, Inst Hlth & Soc, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
基金
澳大利亚研究理事会;
关键词
Cancer rates; deviance distributions; model choice; posterior shrinkage; small-area estimation; deviance information criterion; model averaging; LIKELIHOOD; COMPLEXITY;
D O I
10.1214/08-AOAS205
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers small-area estimation with lung cancer mortality data, and discusses the choice Of Upper-level model for the variation over areas. Inference about the random effects for the areas may depend strongly oil the choice of this model, but this choice is not a straightforward matter. We give a general methodology for both evaluating the data evidence for different models and averaging over plausible models to give robust area effect distributions. We reanalyze the data of Tsutakawa [Biometrics 41 (1985) 69-79] on lung cancer mortality rates in Missouri cities, and show the differences in conclusions about the city rates from this methodology.
引用
收藏
页码:199 / 221
页数:23
相关论文
共 16 条
[1]   The calibration of P-values, posterior Bayes factors and the AIC from the posterior distribution of the likelihood [J].
Aitkin, M .
STATISTICS AND COMPUTING, 1997, 7 (04) :253-261
[2]   A general maximum likelihood analysis of variance components in generalized linear models [J].
Aitkin, M .
BIOMETRICS, 1999, 55 (01) :117-128
[3]   Bayesian point null hypothesis testing via the posterior likelihood ratio [J].
Aitkin, M ;
Boys, RJ ;
Chadwick, T .
STATISTICS AND COMPUTING, 2005, 15 (03) :217-230
[4]  
[Anonymous], 1996, Bayes and empirical Bayes methods for data analysis
[5]  
Celeux G, 2006, BAYESIAN ANAL, V1, P651, DOI 10.1214/06-BA122
[6]   Bayesian model comparison via parallel model output [J].
Congdon, P .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2006, 76 (02) :149-165
[7]   Bayesian predictive model comparison via parallel sampling [J].
Congdon, P .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2005, 48 (04) :735-753
[8]  
Dempster A., 1974, P C FDN QUESTIONS ST, P335
[9]  
Dempster AP, 1997, STAT COMPUT, V7, P247, DOI 10.1023/A:1018598421607
[10]   Multilevel IRT using dichotomous and polytomous response data [J].
Fox, JP .
BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2005, 58 :145-172