Encapsulated magnetic nanoparticles as supports for proteins and recyclable biocatalysts

被引:82
作者
Herdt, Aimee R. [1 ]
Kim, Byeong-Su [1 ]
Taton, T. Andrew [1 ]
机构
[1] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA
关键词
D O I
10.1021/bc060215j
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This paper describes the bioconjugation of histidine-tagged enzymes and other proteins to the surface of composite "magnetomicelles" consisting of magnetic gamma-Fe2O3 nanoparticles encapsulated within cross-linked polystyrene-block-polyacrylate copolymer micelle shells. Free carboxylic acid groups on the magnetomicelle surface were converted to Cu2+-iminodiacetic acid (IDA) for protein capture. The conjugation of T4 DNA ligase and enhanced green fluorescent protein to magnetomicelles revealed that proteins were captured with a high surface density and could be magnetically separated from reaction mixtures and subsequently released from the nanoparticle surface. Additionally, bioconjugation of T7 RNA polymerase yielded a functional enzyme that maintained its biological activity and could be recycled for up to three subsequent transcription reactions. We propose that protein-magnetomicelle bioconjugates are effective for protein bioseparation and enzymatic recycling and further strengthen the idea that nanoparticle surfaces have utility in protein immobilization.
引用
收藏
页码:183 / 189
页数:7
相关论文
共 51 条
[1]   Functionalization of thioctic acid-capped gold nanoparticles for specific immobilization of histidine-tagged proteins [J].
Abad, JM ;
Mertens, SFL ;
Pita, M ;
Fernández, VM ;
Schiffrin, DJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (15) :5689-5694
[2]   Polyelectrolyte-mediated protein adsorption:: Fluorescent protein binding to individual polyelectrolyte nanospheres [J].
Anikin, K ;
Röcker, C ;
Wittemann, A ;
Wiedenmann, J ;
Ballauff, M ;
Nienhaus, GU .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (12) :5418-5420
[3]  
Ausubel F M, 1999, SHORT PROTOCOLS MOL
[4]   Immobilizing enzymes: How to create more suitable biocatalysts [J].
Bornscheuer, UT .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (29) :3336-3337
[5]   Immobilised enzymes: carrier-bound or carrier-free? [J].
Cao, LQ ;
van Langen, L ;
Sheldon, RA .
CURRENT OPINION IN BIOTECHNOLOGY, 2003, 14 (04) :387-394
[6]   Iron nanoparticles as potential magnetic carriers [J].
Carpenter, EE .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2001, 225 (1-2) :17-20
[7]   Immobilization of oriented protein molecules on poly(ethylene glycol)-coated Si(111) [J].
Cha, T ;
Guo, A ;
Jun, Y ;
Pei, DQ ;
Zhu, XY .
PROTEOMICS, 2004, 4 (07) :1965-1976
[8]   Twenty-five years of immobilized metal ion affinity chromatography: past, present and future [J].
Chaga, GS .
JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS, 2001, 49 (1-3) :313-334
[9]  
CHAMBERL.M, 1973, J BIOL CHEM, V248, P2245
[10]   FACS-optimized mutants of the green fluorescent protein (GFP) [J].
Cormack, BP ;
Valdivia, RH ;
Falkow, S .
GENE, 1996, 173 (01) :33-38