Vibrational spectroscopy-based quantification of liver steatosis

被引:9
作者
Szafraniec, E. [1 ,2 ]
Tott, S. [1 ,2 ]
Kus, E. [2 ]
Augustynska, D. [2 ]
Jasztal, A. [2 ]
Filipek, A. [1 ]
Chlopicki, S. [2 ]
Baranska, M. [1 ,2 ]
机构
[1] Jagiellonian Univ, Fac Chem, Gronostajowa 2, PL-30387 Krakow, Poland
[2] Jagiellonian Univ, JCET, Bobrzynskiego 14, PL-30348 Krakow, Poland
来源
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE | 2019年 / 1865卷 / 11期
关键词
Liver steatosis; Lipids; Vibrational spectroscopy; Oil red O staining; OIL RED-O; RAMAN-SPECTROSCOPY; NONALCOHOLIC STEATOHEPATITIS; INSULIN-RESISTANCE; FTIR SPECTROSCOPY; LIPID DROPLETS; UNITED-STATES; DISEASE; EPIDEMIOLOGY; SECTIONS;
D O I
10.1016/j.bbadis.2019.08.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The liver plays a central role in lipid metabolism, and abnormal lipid accumulation in the liver is a key feature of Non-Alcoholic Fatty Liver Disease. In experimental studies, quantification of liver steatosis is commonly based on lipids staining or biochemical analysis. Here, we present a spectroscopic approach for quantitative analysis of the lipid content in the freeze-dried liver. The method is based on vibrational spectroscopy (Raman and infrared) measurements applied for Partial Least Squares (PLS) regression modeling. The obtained PLS models show a good correlation of the spectroscopic data with the reference histological evaluation of steatosis based on Oil Red O (ORO)-stained images of liver cross sections. Vibrational spectroscopy with PLS-based modeling described here represents a useful approach for the fast assessment of the liver steatosis in a small sample of freeze-dried liver tissue. In conclusion, our work demonstrates the easy-to-use method that can be applied in laboratory routine as a beneficial alternative to the established ORO staining.
引用
收藏
页数:6
相关论文
共 39 条
[1]   A novel mouse model of nonalcoholic steatohepatitis with significant insulin resistance [J].
Adkins, Yuriko ;
Schie, Iwan W. ;
Fedor, Dawn ;
Reddy, Aurosis ;
Nguyen, Samantha ;
Zhou, Ping ;
Kelley, Darshan S. ;
Wu, Jian .
LABORATORY INVESTIGATION, 2013, 93 (12) :1313-1322
[2]  
[Anonymous], 2010, Handbook of partial least squares, DOI DOI 10.1007/978-3-540-32827-8_2
[3]   Raman spectroscopy of lipids: a review [J].
Czamara, K. ;
Majzner, K. ;
Pacia, M. Z. ;
Kochan, K. ;
Kaczor, A. ;
Baranska, M. .
JOURNAL OF RAMAN SPECTROSCOPY, 2015, 46 (01) :4-20
[4]   Lipid quantification method using FTIR spectroscopy applied on cancer cell extracts [J].
Derenne, Allison ;
Vandersleyen, Olivier ;
Goormaghtigh, Erik .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2014, 1841 (08) :1200-1209
[5]   Quantification of brain lipids by FTIR spectroscopy and partial least squares regression [J].
Dreissig, Isabell ;
Machill, Susanne ;
Salzer, Reiner ;
Krafft, Christoph .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2009, 71 (05) :2069-2075
[6]   Raman spectroscopy as a sensitive probe of soft tissue composition - Imaging of cross-sections of various organs vs. single spectra of tissue homogenates [J].
Dybas, Jakub ;
Marzec, Katarzyna M. ;
Pacia, Marta Z. ;
Kochan, Kamila ;
Czamara, Krzysztof ;
Chrabaszcz, Karolina ;
Staniszewska-Slezak, Emilia ;
Malek, Kamilla ;
Baranska, Malgorzata ;
Kaczor, Agnieszka .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2016, 85 :117-127
[7]   The role of lipids in the pathogenesis and treatment of type 2 diabetes and associated co-morbidities [J].
Erion, Derek M. ;
Park, Hyun-Jun ;
Lee, Hui-Young .
BMB REPORTS, 2016, 49 (03) :139-148
[8]   Epidemiology and natural history of non-alcoholic fatty liver disease [J].
Fazel, Yousef ;
Koenig, Aaron B. ;
Sayiner, Mehmet ;
Goodman, Zachary D. ;
Younossi, Zobair M. .
METABOLISM-CLINICAL AND EXPERIMENTAL, 2016, 65 (08) :1017-1025
[9]   APPLICATION OF NILE RED, A FLUORESCENT HYDROPHOBIC PROBE, FOR THE DETECTION OF NEUTRAL LIPID DEPOSITS IN TISSUE-SECTIONS - COMPARISON WITH OIL RED O [J].
FOWLER, SD ;
GREENSPAN, P .
JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 1985, 33 (08) :833-836
[10]  
Haenlein M., 2004, Understanding Statistics, V3, P283, DOI DOI 10.1207/S15328031US03044