Exploring crystalline-structural variations of cellulose during alkaline pretreatment for enhanced enzymatic hydrolysis

被引:131
作者
Ling, Zhe [1 ]
Chen, Sheng [1 ]
Zhang, Xun [1 ]
Xu, Feng [1 ]
机构
[1] Beijing Forestry Univ, Beijing Key Lab Lignocellulos Chem, Beijing 100083, Peoples R China
关键词
Cellulose; Crystalline structures; Crystallinity; Alkaline pretreatment; Enzymatic hydrolysis; LIGNOCELLULOSE; DIGESTIBILITY; CONVERSION; ULTRASTRUCTURE; DIFFRACTION; BIOFUELS; POPLAR; IMPACT; FORMS; NAOH;
D O I
10.1016/j.biortech.2016.10.064
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The study aimed to explore the crystallinity and crystalline structure of alkaline pretreated cellulose. The enzymatic hydrolysis followed by pretreatment was conducted for measuring the efficiency of sugar conversion. For cellulose I beta dominated samples, alkaline pretreatment (< 8 wt%) caused increased cellulose crystallinity and depolymerized hemicelluloses, that were superimposed to affect the enzymatic conversion to glucose. Varying crystallite sizes and lattice spacings indicated the separation of cellulose crystals during mercerization (8-12 wt% NaOH). Completion of mercerization was proved under higher alkaline concentration (14-18 wt% NaOH), leading to distortion of crystalline cellulose to some extent. Cellulose II crystallinity showed a stimulative impact on enzymatic hydrolysis due to the weakened hydrophobic interactions within cellulose chains. The current study may provide innovative explanations for enhanced enzymatic digestibility of alkaline pretreated lignocellulosic materials. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:611 / 617
页数:7
相关论文
共 35 条
[1]  
ATALLA RH, 1984, SCIENCE, V223, P283, DOI 10.1126/science.223.4633.283
[2]   Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes [J].
Bhalla, Aditya ;
Bansal, Namita ;
Kumar, Sudhir ;
Bischoff, Kenneth M. ;
Sani, Rajesh K. .
BIORESOURCE TECHNOLOGY, 2013, 128 :751-759
[3]   Restructuring the Crystalline Cellulose Hydrogen Bond Network Enhances Its Depolymerization Rate [J].
Chundawat, Shishir P. S. ;
Bellesia, Giovanni ;
Uppugundla, Nirmal ;
Sousa, Leonardo da Costa ;
Gao, Dahai ;
Cheh, Albert M. ;
Agarwal, Umesh P. ;
Bianchetti, Christopher M. ;
Phillips, George N., Jr. ;
Langan, Paul ;
Balan, Venkatesh ;
Gnanakaran, S. ;
Dale, Bruce E. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (29) :11163-11174
[4]   Enzymatic hydrolysis of different allomorphic forms of microcrystalline cellulose [J].
Ciolacu, Diana ;
Gorgieva, Selestina ;
Tampu, Daniel ;
Kokol, Vanja .
CELLULOSE, 2011, 18 (06) :1527-1541
[5]   How Does Plant Cell Wall Nanoscale Architecture Correlate with Enzymatic Digestibility? [J].
Ding, Shi-You ;
Liu, Yu-San ;
Zeng, Yining ;
Himmel, Michael E. ;
Baker, John O. ;
Bayer, Edward A. .
SCIENCE, 2012, 338 (6110) :1055-1060
[6]   Mercerisation of cellulose in aqueous NaOH at low concentrations [J].
Duchemin, B. J. C. .
GREEN CHEMISTRY, 2015, 17 (07) :3941-3947
[7]   Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fibre [J].
El Oudiani, A. ;
Chaabouni, Y. ;
Msahli, S. ;
Saldi, F. .
CARBOHYDRATE POLYMERS, 2011, 86 (03) :1221-1229
[8]   Effect of alkaline treatment on cellulose supramolecular structure studied with combined confocal Raman spectroscopy and atomic force microscopy [J].
Eronen, Paula ;
Osterberg, Monika ;
Jaaskelainen, Anna-Stiina .
CELLULOSE, 2009, 16 (02) :167-178
[9]   Idealized powder diffraction patterns for cellulose polymorphs [J].
French, Alfred D. .
CELLULOSE, 2014, 21 (02) :885-896
[10]   The structural changes in crystalline cellulose and effects on enzymatic digestibility [J].
Horikawa, Yoshiki ;
Konakahara, Naoya ;
Imai, Tomoya ;
Kentaro, Abe ;
Kobayashi, Yoshinori ;
Sugiyama, Junji .
POLYMER DEGRADATION AND STABILITY, 2013, 98 (11) :2351-2356