Silicon Nanowires Synthesis by Metal-Assisted Chemical Etching: A Review

被引:83
作者
Leonardi, Antonio Alessio [1 ,2 ,3 ]
Lo Faro, Maria Jose [1 ,3 ]
Irrera, Alessia [2 ]
机构
[1] Univ Catania, Dipartimento Fis & Astron Ettore Majorana, Via Santa Sofia 64, I-95123 Catania, Italy
[2] CNR, Inst Processi Chim Fis CNR IPCF, Viale E Stagno DAlcontres 37, I-98158 Messina, Italy
[3] CNR, Ist Microelettron & Microsistemi CNR IMM UoS Cata, Via Santa Sofia 64, I-95123 Catania, Italy
关键词
silicon; silicon nanowires; MACE metal-assisted chemical etching; nanotechnology; CMOS-compatible;
D O I
10.3390/nano11020383
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Silicon is the undisputed leader for microelectronics among all the industrial materials and Si nanostructures flourish as natural candidates for tomorrow's technologies due to the rising of novel physical properties at the nanoscale. In particular, silicon nanowires (Si NWs) are emerging as a promising resource in different fields such as electronics, photovoltaic, photonics, and sensing. Despite the plethora of techniques available for the synthesis of Si NWs, metal-assisted chemical etching (MACE) is today a cutting-edge technology for cost-effective Si nanomaterial fabrication already adopted in several research labs. During these years, MACE demonstrates interesting results for Si NW fabrication outstanding other methods. A critical study of all the main MACE routes for Si NWs is here presented, providing the comparison among all the advantages and drawbacks for different MACE approaches. All these fabrication techniques are investigated in terms of equipment, cost, complexity of the process, repeatability, also analyzing the possibility of a commercial transfer of these technologies for microelectronics, and which one may be preferred as industrial approach.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 152 条
[1]  
[Anonymous], LASERS MOORES LAW
[2]   Kinetics of Si and Ge nanowires growth through electron beam evaporation [J].
Artoni, Pietro ;
Pecora, Emanuele Francesco ;
Irrera, Alessia ;
Priolo, Francesco .
NANOSCALE RESEARCH LETTERS, 2011, 6
[3]   Silicon nanowires with controlled sidewall profile and roughness fabricated by thin-film dewetting and metal-assisted chemical etching [J].
Azeredo, B. P. ;
Sadhu, J. ;
Ma, J. ;
Jacobs, K. ;
Kim, J. ;
Lee, K. ;
Eraker, J. H. ;
Li, X. ;
Sinha, S. ;
Fang, N. ;
Ferreira, P. ;
Hsu, K. .
NANOTECHNOLOGY, 2013, 24 (22)
[4]   Porosity control in metal-assisted chemical etching of degenerately doped silicon nanowires [J].
Balasundaram, Karthik ;
Sadhu, Jyothi S. ;
Shin, Jae Cheol ;
Azeredo, Bruno ;
Chanda, Debashis ;
Malik, Mohammad ;
Hsu, Keng ;
Rogers, John A. ;
Ferreira, Placid ;
Sinha, Sanjiv ;
Li, Xiuling .
NANOTECHNOLOGY, 2012, 23 (30)
[5]   From Si nanowires to porous silicon: The role of excitonic effects [J].
Bruno, Mauro ;
Palummo, Maurizia ;
Marini, Andrea ;
Del Sole, Rodolfo ;
Ossicini, Stefano .
PHYSICAL REVIEW LETTERS, 2007, 98 (03)
[6]   THE EFFECTS OF MICROCRYSTAL SIZE AND SHAPE ON THE ONE PHONON RAMAN-SPECTRA OF CRYSTALLINE SEMICONDUCTORS [J].
CAMPBELL, IH ;
FAUCHET, PM .
SOLID STATE COMMUNICATIONS, 1986, 58 (10) :739-741
[7]   Semiconductor Nanowire Optical Antenna Solar Absorbers [J].
Cao, Linyou ;
Fan, Pengyu ;
Vasudev, Alok P. ;
White, Justin S. ;
Yu, Zongfu ;
Cai, Wenshan ;
Schuller, Jon A. ;
Fan, Shanhui ;
Brongersma, Mark L. .
NANO LETTERS, 2010, 10 (02) :439-445
[8]   Densely Packed Arrays of Ultra-High-Aspect-Ratio Silicon Nanowires Fabricated using Block-Copolymer Lithography and Metal-Assisted Etching [J].
Chang, Shih-Wei ;
Chuang, Vivian P. ;
Boles, Steven T. ;
Ross, Caroline A. ;
Thompson, Carl V. .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (15) :2495-2500
[9]   In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching [J].
Chattopadhyay, S ;
Li, XL ;
Bohn, PW .
JOURNAL OF APPLIED PHYSICS, 2002, 91 (09) :6134-6140
[10]   Morphological Control of Single-Crystalline Silicon Nanowire Arrays near Room Temperature [J].
Chen, Chia-Yun ;
Wu, Chi-Sheng ;
Chou, Chia-Jen ;
Yen, Ta-Jen .
ADVANCED MATERIALS, 2008, 20 (20) :3811-+