Unique Ergodicity for Infinite Measures

被引:0
作者
Sarig, Omri M. [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
来源
PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL III: INVITED LECTURES | 2010年
关键词
Unique ergodicity; Infinite ergodic theory; Horocycle flows; Infinite genus; INVARIANT-MEASURES; GROUP-EXTENSIONS; HOROCYCLE FLOWS; TRANSFORMATIONS; ORBITS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We survey examples of dynamical systems on non compact spaces which exhibit measure rigidity on the level of infinite invariant measures in one or more of the following ways: all locally finite ergodic invariant measures can be described; exactly one (up to scaling) admits a generalized law of large numbers; the generic points can be specified. The examples are horocycle flows on hyperbolic surfaces of infinite genus, and certain skew products over irrational rotations and adic transformations. In all cases, the locally finite ergodic invariant measures are Maharam measures.
引用
收藏
页码:1777 / 1803
页数:27
相关论文
共 57 条
[1]   RATIONAL ERGODICITY AND A METRIC INVARIANT FOR MARKOV SHIFTS [J].
AARONSON, J .
ISRAEL JOURNAL OF MATHEMATICS, 1977, 27 (02) :93-123
[2]   2ND-ORDER ERGODIC-THEOREMS FOR ERGODIC TRANSFORMATIONS OF INFINITE MEASURE-SPACES [J].
AARONSON, J ;
DENKER, M ;
FISHER, AM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 114 (01) :115-127
[3]   Invariant measures and asymptotics for some skew products (vol 128, pg 93, 2002) [J].
Aaronson, J ;
Nakada, H ;
Sarig, O ;
Solomyak, R .
ISRAEL JOURNAL OF MATHEMATICS, 2003, 138 (1) :377-379
[4]   THE INTRINSIC NORMALIZING CONSTANTS OF TRANSFORMATIONS PRESERVING INFINITE MEASURES [J].
AARONSON, J .
JOURNAL D ANALYSE MATHEMATIQUE, 1987, 49 :239-270
[5]   Invariant measures and asymptotics for some skew products [J].
Aaronson, J ;
Nakada, H ;
Sarig, O ;
Solomyak, R .
ISRAEL JOURNAL OF MATHEMATICS, 2002, 128 (1) :93-134
[6]  
AARONSON J, 1982, P LOND MATH SOC, V44, P535
[7]  
Aaronson J., 1997, MATH SURVEYS MONOGRA, V50, pxii+284
[8]  
Aaronson J., 1998, B SOC BRASIL MAT, V29, P181
[9]  
Babillot M, 2004, RANDOM WALKS AND GEOMETRY, P319
[10]  
Babillot M., 1998, TATA I FUND RES STUD, P1