Fundamental relations for anomalous thermoelectric transport coefficients in the nonlinear regime

被引:41
作者
Zeng, Chuanchang [1 ]
Nandy, Snehasish [2 ]
Tewari, Sumanta [1 ]
机构
[1] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA
[2] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 03期
关键词
TRANSITION-METAL DICHALCOGENIDES; BERRY PHASE;
D O I
10.1103/PhysRevResearch.2.032066
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In a series of recent papers, anomalous Hall and Nernst effects have been theoretically discussed in the nonlinear regime and have seen some early success in experiments. In this paper, by utilizing the role of Berry curvature dipole, we derive the fundamental mathematical relations between the anomalous electric and thermoelectric transport coefficients in the nonlinear regime. The formulas we derive replace the celebrated Wiedemann-Franz law and Mott relation of anomalous thermoelectric transport coefficients defined in the linear response regime. In addition to fundamental and testable new formulas, an important by-product of this work is the prediction of nonlinear anomalous thermal Hall effect which can be observed in experiments.
引用
收藏
页数:6
相关论文
共 55 条
[1]   Strain dependence of photoluminescence and circular dichroism in transition metal dichalcogenides: a k . p analysis [J].
Aas, Shahnaz ;
Bulutay, Ceyhun .
OPTICS EXPRESS, 2018, 26 (22) :28672-28681
[2]  
[Anonymous], 1977, Statistical Physics
[3]  
Ashcroft N. W., 1988, Solid State Physics
[4]   Theory of Dissipationless Nernst Effects [J].
Bergman, Doron L. ;
Oganesyan, Vadim .
PHYSICAL REVIEW LETTERS, 2010, 104 (06)
[5]   Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator [J].
Chang, Cui-Zu ;
Zhang, Jinsong ;
Feng, Xiao ;
Shen, Jie ;
Zhang, Zuocheng ;
Guo, Minghua ;
Li, Kang ;
Ou, Yunbo ;
Wei, Pang ;
Wang, Li-Li ;
Ji, Zhong-Qing ;
Feng, Yang ;
Ji, Shuaihua ;
Chen, Xi ;
Jia, Jinfeng ;
Dai, Xi ;
Fang, Zhong ;
Zhang, Shou-Cheng ;
He, Ke ;
Wang, Yayu ;
Lu, Li ;
Ma, Xu-Cun ;
Xue, Qi-Kun .
SCIENCE, 2013, 340 (6129) :167-170
[6]   Anomalous Hall effect in paramagnetic two-dimensional systems [J].
Culcer, D ;
MacDonald, A ;
Niu, Q .
PHYSICAL REVIEW B, 2003, 68 (04)
[7]   Disorder-induced nonlinear Hall effect with time-reversal symmetry [J].
Du, Z. Z. ;
Wang, C. M. X. ;
Li, Shuai ;
Lu, Hai-Zhou ;
Xie, X. C. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[8]   The anomalous Hall effect and magnetic monopoles in momentum space [J].
Fang, Z ;
Nagaosa, N ;
Takahashi, KS ;
Asamitsu, A ;
Mathieu, R ;
Ogasawara, T ;
Yamada, H ;
Kawasaki, M ;
Tokura, Y ;
Terakura, K .
SCIENCE, 2003, 302 (5642) :92-95
[9]   Anomalous Nernst and thermal Hall effects in tilted Weyl semimetals [J].
Ferreiros, Yago ;
Zyuzin, A. A. ;
Bardarson, Jens H. .
PHYSICAL REVIEW B, 2017, 96 (11)
[10]  
Franz R., 1853, Ann. Phys., V165, P497, DOI [10.1002/andp.18531650802, DOI 10.1002/ANDP.18531650802]