On equivariant Dirac operators for SUq(2)

被引:6
作者
Chakraborty, Partha Sarathi
Pal, Arupkumar
机构
[1] Inst Math Sci, Madras 600113, Tamil Nadu, India
[2] Indian Stat Inst, New Delhi 110016, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2006年 / 116卷 / 04期
关键词
spectral triple; quantum group;
D O I
10.1007/BF02829708
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We explain the notion of minimality for an equivariant spectral triple and show that the triple for the quantum SU(2) group constructed by Chakraborty and Pal in [2] is minimal. We also give a decomposition of the spectral triple constructed by Dabrowski et al [8] in terms of the minimal triple constructed in [2].
引用
收藏
页码:531 / 541
页数:11
相关论文
共 12 条
[1]  
BAAJ S, 1993, ANN SCI ECOLE NORM S, V26, P425
[2]   Equivariant spectral triples on the quantum SU(2) group [J].
Chakraborty, PS ;
Pal, A .
K-THEORY, 2003, 28 (02) :107-126
[3]  
CHAKRABORTY PS, ARXIVMATHOA0211367
[4]  
CHAKRABORTY PS, ARXIVMATHOA0305157
[5]   Noncommutative manifolds, the instanton algebra and isospectral deformations [J].
Connes, A ;
Landi, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 221 (01) :141-159
[6]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[7]   CYCLIC COHOMOLOGY, QUANTUM GROUP SYMMETRIES AND THE LOCAL INDEX FORMULA FOR SUq(2) [J].
Connes, Alain .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2004, 3 (01) :17-68
[8]   The Dirac operator on SUq(2) [J].
Dabrowski, L ;
Landi, G ;
Sitarz, A ;
van Suijlekom, W ;
Várilly, JC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 259 (03) :729-759
[9]  
Higson N., 2000, Analytic K-Homology
[10]   DUAL PAIRS OF HOPF ASTERISK-ALGEBRAS [J].
VANDAELE, A .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1993, 25 :209-230