Topological Protection Brought to Light by the Time-Reversal Symmetry Breaking

被引:22
|
作者
Piatrusha, S. U. [1 ]
Tikhonov, E. S. [1 ,2 ]
Kvon, Z. D. [3 ,4 ]
Mikhailov, N. N. [3 ,4 ]
Dvoretsky, S. A. [3 ]
Khrapai, V. S. [1 ,5 ]
机构
[1] Russian Acad Sci, Inst Solid State Phys, Chernogolovka 142432, Russia
[2] Natl Res Univ Higher Sch Econ, Moscow 101000, Russia
[3] Inst Semicond Phys, Novosibirsk 630090, Russia
[4] Novosibirsk State Univ, Novosibirsk 630090, Russia
[5] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia
基金
俄罗斯科学基金会;
关键词
ANDERSON LOCALIZATION; WEAK-LOCALIZATION; QUANTUM; TRANSITION; TRANSPORT; ABSENCE; BACKSCATTERING; DIFFUSION; ELECTRONS; NOISE;
D O I
10.1103/PhysRevLett.123.056801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent topological band theory distinguishes electronic band insulators with respect to various symmetries and topological invariants, most commonly, the time reversal symmetry and the Z(2) invariant. The interface of two topologically distinct insulators hosts a unique class of electronic states-the helical states, which shortcut the gapped bulk and exhibit spin-momentum locking. The magic and so far elusive property of the helical electrons, known as topological protection, prevents them from coherent backscattering as long as the underlying symmetry is preserved. Here we present an experiment that brings to light the strength of topological protection in one-dimensional helical edge states of a Z(2) quantum spin-Hall insulator in HgTe. At low temperatures, we observe the dramatic impact of a tiny magnetic field, which results in an exponential increase of the resistance accompanied by giant mesoscopic fluctuations and a gap opening. This textbook Anderson localization scenario emerges only upon the time-reversal symmetry breaking, bringing the first direct evidence of the topological protection strength in helical edge states.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Time-reversal symmetry breaking in the superconducting state of ScS
    Arushi
    Kushwaha, R. K.
    Singh, D.
    Hillier, A. D.
    Scheurer, M. S.
    Singh, R. P.
    PHYSICAL REVIEW B, 2022, 106 (02)
  • [22] Comment on "Time-reversal symmetry-breaking superconductivity"
    Adhikari, SK
    PHYSICAL REVIEW B, 2001, 63 (22):
  • [23] Quantum Transport Enhancement by Time-Reversal Symmetry Breaking
    Zoltán Zimborás
    Mauro Faccin
    Zoltán Kádár
    James D. Whitfield
    Ben P. Lanyon
    Jacob Biamonte
    Scientific Reports, 3
  • [24] Spontaneous time-reversal symmetry breaking by disorder in superconductors
    Andersen, Brian M.
    Kreisel, Andreas
    Hirschfeld, P. J.
    FRONTIERS IN PHYSICS, 2024, 12
  • [25] Spectroscopic signatures of time-reversal symmetry breaking superconductivity
    Nicholas R. Poniatowski
    Jonathan B. Curtis
    Amir Yacoby
    Prineha Narang
    Communications Physics, 5
  • [26] Pseudomagnetic catalysis of the time-reversal symmetry breaking in graphene
    Herbut, Igor F.
    PHYSICAL REVIEW B, 2008, 78 (20):
  • [27] Quantum walk search with time-reversal symmetry breaking
    Wong, Thomas G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (40)
  • [28] Spectroscopic signatures of time-reversal symmetry breaking superconductivity
    Poniatowski, Nicholas R.
    Curtis, Jonathan B.
    Yacoby, Amir
    Narang, Prineha
    COMMUNICATIONS PHYSICS, 2022, 5 (01)
  • [29] Search for time-reversal symmetry breaking in unconventional superconductors
    Kapitulnik, Aharon
    Xia, Jing
    Schemm, Elizabeth
    PHYSICA B-CONDENSED MATTER, 2009, 404 (3-4) : 507 - 509
  • [30] Quantum Transport Enhancement by Time-Reversal Symmetry Breaking
    Zimboras, Zolta
    Faccin, Mauro
    Kadar, Zoltan
    Whitfield, James D.
    Lanyon, Ben P.
    Biamonte, Jacob
    SCIENTIFIC REPORTS, 2013, 3