The μ-permanent of a tridiagonal matrix, orthogonal polynomials, and chain sequences

被引:5
|
作者
da Fonseca, C. M. [1 ]
机构
[1] Univ Coimbra, Dept Math, P-3001454 Coimbra, Portugal
关键词
Permanent; Determinant; mu-Permanent; Orthogonal polynomials sequence; Chain sequences; Tridiagonal matrix; Toeplitz matrix; DETERMINANT;
D O I
10.1016/j.laa.2009.10.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A = (a(ij)) bean n x n complex matrix. For any real mu, define the polynomial P(mu)(A) = Sigma(sigma epsilon Sn) a(1 sigma(1)) ... a(n sigma(n))mu(l(sigma)), where l(sigma) is the number of inversions of the permutation a in the symmetric group S(n). We analyze and establish a conjecture on the location of the zeros of P(mu) (A), when A is a non-diagonal positive definite matrix. We prove the conjecture for the particular case when A is a Jacobi matrix. Our proof is independent from known results, and uses a connection with orthogonal polynomials and chain sequences. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1258 / 1266
页数:9
相关论文
共 50 条
  • [1] CHAIN SEQUENCES AND COMPACT PERTURBATIONS OF ORTHOGONAL POLYNOMIALS
    SZWARC, R
    MATHEMATISCHE ZEITSCHRIFT, 1994, 217 (01) : 57 - 71
  • [2] Chain sequences, orthogonal polynomials, and Jacobi matrices
    Szwarc, R
    JOURNAL OF APPROXIMATION THEORY, 1998, 92 (01) : 59 - 73
  • [3] Orthogonal Polynomials Associated with Complementary Chain Sequences
    Behera, Kiran Kumar
    Sri Ranga, A.
    Swaminathan, A.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016, 12
  • [4] Orthogonal polynomials on the unit circle and chain sequences
    Costa, M. S.
    Felix, H. M.
    Ranga, A. Sri
    JOURNAL OF APPROXIMATION THEORY, 2013, 173 : 14 - 32
  • [5] Chain sequences and symmetric generalized orthogonal polynomials
    Bracciali, CF
    Dimitrov, DK
    Ranga, AS
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 143 (01) : 95 - 106
  • [6] Pre-sequences of matrix orthogonal polynomials
    Tirao J.
    São Paulo Journal of Mathematical Sciences, 2018, 12 (2) : 377 - 388
  • [7] Weighted shift operators, orthogonal polynomials and chain sequences
    Lasser, Rupert
    Obermaier, Josef
    ACTA SCIENTIARUM MATHEMATICARUM, 2020, 86 (1-2): : 331 - 342
  • [8] Weighted shift operators, orthogonal polynomials and chain sequences
    Rupert Lasser
    Josef Obermaier
    Acta Scientiarum Mathematicarum, 2020, 86 : 331 - 342
  • [9] FINITE SEQUENCES OF ORTHOGONAL POLYNOMIALS CONNECTED BY A JACOBI MATRIX
    DEBOOR, C
    SAFF, EB
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 75 : 43 - 55
  • [10] On the spectrum of tridiagonal operators in the context of orthogonal polynomials
    Lasser, Rupert
    Obermaier, Josef
    ACTA SCIENTIARUM MATHEMATICARUM, 2024,