A new algorithm for computation of a regularization solution path for reinforced multicategory support vector machines

被引:0
|
作者
Xiao, Xiao [1 ]
Liu, Xiexin [2 ]
Lu, Xiaoling [1 ]
Chang, Xiangyu [3 ]
Liu, Yufeng [4 ,5 ,6 ]
机构
[1] Renmin Univ China, Sch Stat, Data Min Ctr, Ctr Appl Stat, Beijing 100872, Peoples R China
[2] Univ Iowa, Tippie Coll Business, Dept Management Sci, Iowa City, IA 52242 USA
[3] Xi An Jiao Tong Univ, Sch Management, Ctr Data Sci & Informat Qual, Xian, Peoples R China
[4] Univ North Carolina Chapel Hill, Carolina Ctr Genome Sci, Lineberger Comprehens Canc Ctr, Dept Stat & Operat Res, Chapel Hill, NC USA
[5] Univ North Carolina Chapel Hill, Carolina Ctr Genome Sci, Lineberger Comprehens Canc Ctr, Dept Genet, Chapel Hill, NC USA
[6] Univ North Carolina Chapel Hill, Carolina Ctr Genome Sci, Lineberger Comprehens Canc Ctr, Dept Biostat, Chapel Hill, NC USA
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2017年 / 45卷 / 02期
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Multicategory classification; Solution path; SVM;
D O I
10.1002/cjs.11321
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The recently proposed Reinforced Multicategory Support Vector Machine (RMSVM) has been proven to have desirable theoretical properties as well as competitive numerical accuracy for multi-class classification problems. Currently solving the RMSVM is based on a grid search approach for selecting the tuning parameter , which dramatically increases its computational complexity. To overcome this hurdle we develop a new algorithm RMSVMPATH to compute a regularization solution path for RMSVM. We relax the commonly used continuity assumption and propose a new linear programming approach. Numerical simulations and real data analyses demonstrate that the proposed algorithm can yield a valid solution path at a low computational cost. The Canadian Journal of Statistics 45: 149-163; 2017 (c) 2017 Statistical Society of Canada
引用
收藏
页码:149 / 163
页数:15
相关论文
共 50 条
  • [1] Characterizing the solution path of multicategory support vector machines
    Lee, Yoonkyung
    Cui, Zhenhuan
    STATISTICA SINICA, 2006, 16 (02) : 391 - 409
  • [2] Reinforced Multicategory Support Vector Machines
    Liu, Yufeng
    Yuan, Ming
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (04) : 901 - 919
  • [3] Reinforced Angle-Based Multicategory Support Vector Machines
    Zhang, Chong
    Liu, Yufeng
    Wang, Junhui
    Zhu, Hongtu
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2016, 25 (03) : 806 - 825
  • [4] An Improved Algorithm for the Solution of the Regularization Path of Support Vector Machine
    Ong, Chong-Jin
    Shao, Shiyun
    Yang, Jianbo
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (03): : 451 - 462
  • [5] A new fuzzy multicategory support vector machines classifier
    Lu, Shu-Xia
    Liu, Xian-Hao
    Zhai, Jun-Hai
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 2859 - +
  • [6] The consistency of multicategory support vector machines
    Chen, DR
    Xiang, DH
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2006, 24 (1-4) : 155 - 169
  • [7] Multicategory Classification by Support Vector Machines
    Erin J. Bredensteiner
    Kristin P. Bennett
    Computational Optimization and Applications, 1999, 12 : 53 - 79
  • [8] Multicategory classification by support vector machines
    Bredensteiner, EJ
    Bennett, KP
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1999, 12 (1-3) : 53 - 79
  • [9] The consistency of multicategory support vector machines
    Di-Rong Chen
    Dao-Hong Xiang
    Advances in Computational Mathematics, 2006, 24 : 155 - 169
  • [10] Robust multicategory support vector machines using difference convex algorithm
    Chong Zhang
    Minh Pham
    Sheng Fu
    Yufeng Liu
    Mathematical Programming, 2018, 169 : 277 - 305