Master symmetries and bi-Hamiltonian structures for the relativistic Toda lattice

被引:14
作者
daCosta, JMN [1 ]
Marle, CM [1 ]
机构
[1] UNIV PARIS 06,MATH INST,F-75252 PARIS 05,FRANCE
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1997年 / 30卷 / 21期
关键词
D O I
10.1088/0305-4470/30/21/025
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define a bi-Hamiltonian formulation for the relativistic Toda lattice with a recursion operator on R-2n. We use a theorem by W Oevel to generate higher order Poisson tensors and master symmetries for the relativistic Toda lattice. These Poisson tensors and master symmetries reduce to R2n-1.
引用
收藏
页码:7551 / 7556
页数:6
相关论文
共 13 条
[1]   RECURSION OPERATOR AND BACKLUND-TRANSFORMATIONS FOR THE RUIJS']JSENAARS-TODA LATTICE [J].
BRUSCHI, M ;
RAGNISCO, O .
PHYSICS LETTERS A, 1988, 129 (01) :21-25
[2]   LAX REPRESENTATION AND COMPLETE-INTEGRABILITY FOR THE PERIODIC RELATIVISTIC TODA LATTICE [J].
BRUSCHI, M ;
RAGNISCO, O .
PHYSICS LETTERS A, 1989, 134 (06) :365-370
[3]  
Costa J.M. Nunes da, 1996, DIFFERENTIAL GEOMETR, P523
[4]   MULTIPLE HAMILTONIAN STRUCTURES FOR TODA-TYPE SYSTEMS [J].
DAMIANOU, PA .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (10) :5511-5541
[5]   ON THE MASTER SYMMETRIES AND BI-HAMILTONIAN STRUCTURE OF THE TODA LATTICE [J].
FERNANDES, RL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (15) :3797-3803
[6]   THE HIERARCHY OF THE BENJAMIN-ONO-EQUATION [J].
FOKAS, AS ;
FUCHSSTEINER, B .
PHYSICS LETTERS A, 1981, 86 (6-7) :341-345
[7]   MASTERSYMMETRIES, HIGHER-ORDER TIME-DEPENDENT SYMMETRIES AND CONSERVED-DENSITIES OF NONLINEAR EVOLUTION-EQUATIONS [J].
FUCHSSTEINER, B .
PROGRESS OF THEORETICAL PHYSICS, 1983, 70 (06) :1508-1522
[8]  
MAGRI F, 1984, QUADERNO S, V19
[9]   EXPLICIT FORMULAS FOR SYMMETRIES AND CONSERVATION-LAWS OF THE KADOMTSEV-PETVIASHVILI EQUATION [J].
OEVEL, W ;
FUCHSSTEINER, B .
PHYSICS LETTERS A, 1982, 88 (07) :323-327
[10]   MASTERSYMMETRIES, ANGLE VARIABLES, AND RECURSION OPERATOR OF THE RELATIVISTIC TODA LATTICE [J].
OEVEL, W ;
FUCHSSTEINER, B ;
ZHANG, HW ;
RAGNISCO, O .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (11) :2664-2670