Low temperature HFCVD synthesis of tungsten oxide thin film for high response hydrogen gas sensor application

被引:46
作者
Godbole, Rhushikesh [1 ]
Ameen, Sadia [2 ]
Nakate, Umesh T. [3 ]
Akhtar, M. Shaheer [4 ]
Shin, Hyung-Shik [1 ,5 ]
机构
[1] Chonbuk Natl Univ, Sch Chem Engn, Solar Energy Res Ctr, Energy Mat & Surface Sci Lab, Jeonju 54896, South Korea
[2] Chonbuk Natl Univ, Jeongeup Ind Acad Cooperat Support Ctr, Adv Mat & Devices Lab, Jeongeup Campus, Jeonju 56212, South Korea
[3] Chonbuk Natl Univ, Solar Energy Res Ctr, Sch Semicond & Chem Engn, Jeonju 54896, South Korea
[4] Chonbuk Natl Univ, New & Renewable Energy Mat Dev Ctr NewREC, Jeonju, South Korea
[5] Korea Basic Sci Inst, 169-148 Gwahak Ro, Daejeon 34133, South Korea
关键词
WO3; Thin films; Low temperature HFCVD; Surfaces; Hydrogen detection; SENSING PROPERTIES;
D O I
10.1016/j.matlet.2019.07.110
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A quick and efficient approach was employed for the growth of nanocrystalline tungsten oxide (WO3) thin films using one-step hot filament chemical vapor deposition (HFCVD) method at low temperature. In a typical experiment, the parent material tungsten (W) was subjected to oxidation, gasification and its subsequent condensation to obtain the uniform deposition of WO3 thin film on silicon substrate at significantly low temperature of similar to 200 degrees C. Prepared WO3 thin film possessed the cauliflower nanostructure (WCNs) with typical monoclinic WO3 crystal structure. Prepared WCNs thin films were applied for the detection of hydrogen (H-2) gas at 100 ppm. H-2 response increased with rise in temperature and the maximum response of similar to 87% was obtained at the optimized temperature of similar to 250 degrees C with response time 180 s. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:398 / 401
页数:4
相关论文
共 20 条
[1]   RAMAN STUDY OF CERAMIC TUNGSTEN TRIOXIDE AT LOW-TEMPERATURES [J].
ANDERSON, A .
SPECTROSCOPY LETTERS, 1976, 9 (11) :809-819
[2]   Aerosol-assisted chemical vapour deposition of WO3 thin films using polyoxometallate precursors and their gas sensing properties [J].
Ashraf, Sobia ;
Blackman, Christopher S. ;
Palgrave, Robert G. ;
Parkin, Ivan P. .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (11) :1063-1070
[3]   Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors:: a status report [J].
Barsan, N ;
Schweizer-Berberich, M ;
Göpel, W .
FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY, 1999, 365 (04) :287-304
[4]   Tandem gasochromic-Pd-WO3/graphene/Si device for room-emperature high-performance optoelectronic hydrogen sensors [J].
Chen, Mingyuan ;
Zou, Liping ;
Zhang, Zenghai ;
Shen, Jun ;
Li, Dong ;
Zong, Qijun ;
Gao, Guohua ;
Wu, Guangming ;
Shen, Jun ;
Zhang, Zengxing .
CARBON, 2018, 130 :281-287
[5]   Physical properties characterization of WO3 films grown by hot-filament metal oxide deposition [J].
Diaz-Reyes, J. ;
Delgado-Macuil, R. J. ;
Dorantes-Garcia, V. ;
Perez-Benitez, A. ;
Balderas-Lopez, J. A. ;
Ariza-Ortega, J. A. .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2010, 174 (1-3) :182-186
[6]   Sub-ppm sensitivity towards carbon monoxide by means of pulsed laser deposited SnO2:Pt based sensors [J].
Dolbec, R. ;
El Khakani, M. A. .
APPLIED PHYSICS LETTERS, 2007, 90 (17)
[7]   CO-sensing properties of undoped and doped tin oxide thin films prepared by electron beam evaporation [J].
Durrani, SMA ;
Khawaja, EE ;
Al-Kuhaili, MF .
TALANTA, 2005, 65 (05) :1162-1167
[8]   The Effects of Growth Time on WO3 Nanostructure Synthesized by HFCVD Method [J].
Ghorannevis, Z. ;
Jafari, A. ;
Alipour, R. ;
Ghoranneviss, M. .
JOURNAL OF FUSION ENERGY, 2015, 34 (05) :1157-1161
[9]   Palladium enriched tungsten oxide thin films: an efficient gas sensor for hazardous gases [J].
Godbole, Rhushikesh ;
Godbole, Vijay ;
Bhagwat, Sunita .
EUROPEAN PHYSICAL JOURNAL B, 2019, 92 (04)
[10]   Effect of film thickness on gas sensing properties of sprayed WO3 thin films [J].
Godbole, Rhushikesh ;
Godbole, V. P. ;
Alegaonkar, P. S. ;
Bhagwat, Sunita .
NEW JOURNAL OF CHEMISTRY, 2017, 41 (20) :11807-11816