Quantum error rejection for faithful quantum communication over noise channels

被引:14
作者
Guo, Peng-Liang [1 ]
Gao, Cheng-Yan [1 ]
Li, Tao [2 ]
Li, Xi-Han [3 ]
Deng, Fu-Guo [1 ,4 ]
机构
[1] Beijing Normal Univ, Appl Opt Beijing Area Major Lab, Dept Phys, Beijing 100875, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Sci, Nanjing 210094, Jiangsu, Peoples R China
[3] Chongqing Univ, Dept Phys, Chongqing 400044, Peoples R China
[4] King Abdulaziz Univ, Fac Sci, Dept Math, NAAM Res Grp, Jeddah 21589, Saudi Arabia
来源
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY | 2019年 / 62卷 / 11期
基金
中国国家自然科学基金;
关键词
quantum state transmission; quantum error rejection; collective noise; ORBITAL ANGULAR-MOMENTUM; DECOHERENCE-FREE STATES; KEY DISTRIBUTION; QUBIT TRANSMISSION; ENTANGLEMENT PURIFICATION; OPTICAL COMMUNICATIONS; DOT SPINS; POLARIZATION; HYPERENTANGLEMENT; CRYPTOGRAPHY;
D O I
10.1007/s11433-019-9396-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum state transmission is a prerequisite for various quantum communication networks. The channel noise inevitably introduces distortion of quantum states passing through either a free-space channel or a fi bre channel, which leads to errors or decreases the security of a practical quantum communication network. Quantum error rejection is a useful technology to faithfully transmit quantum states over large-scale quantum channels. It provides the communication parties with an uncorrupted quantum state by rejecting error states. Usually, additional photons or degrees of freedom are required to overcome the adverse e ff ects of channel noise. As quantum error rejection method consumes less quantum resource than other anti-noise methods, it is more convenient to perform error-rejection quantum state transmission with current technology. In this review, several typical quantum errorrejection schemes for single-photon state transmission are introduced in brief and some error-rejection schemes for entanglement distribution are also brie fl y presented.
引用
收藏
页数:19
相关论文
共 203 条
[41]   Single logical qubit information encoding scheme with the minimal optical decoherence-free subsystem [J].
Dong, Li ;
Wang, Jun-Xi ;
Li, Qing-Yang ;
Shen, Hong-Zhi ;
Dong, Hai-Kuan ;
Xiu, Xiao-Ming ;
Gao, Ya-Jun .
OPTICS LETTERS, 2016, 41 (05) :1030-1033
[42]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[43]   Quantum computation and quantum simulation [J].
Fan Heng .
ACTA PHYSICA SINICA, 2018, 67 (12)
[44]   Entanglement concentration of W-class states on nonlocal atoms using low-Q optical cavity [J].
Fei, Shao-Ming .
SCIENCE CHINA-INFORMATION SCIENCES, 2016, 59 (12)
[45]   Photonic quantum information processing: a review [J].
Flamini, Fulvio ;
Spagnolo, Nicolo ;
Sciarrino, Fabio .
REPORTS ON PROGRESS IN PHYSICS, 2019, 82 (01)
[46]   Long-Distance Measurement-Device-Independent Multiparty Quantum Communication [J].
Fu, Yao ;
Yin, Hua-Lei ;
Chen, Teng-Yun ;
Chen, Zeng-Bing .
PHYSICAL REVIEW LETTERS, 2015, 114 (09)
[47]   Unconditional quantum teleportation [J].
Furusawa, A ;
Sorensen, JL ;
Braunstein, SL ;
Fuchs, CA ;
Kimble, HJ ;
Polzik, ES .
SCIENCE, 1998, 282 (5389) :706-709
[48]  
Gao C. Y., 2017, J PHYS B ATOM MOL PH, V50, P5
[49]   Multi-photon self-error-correction hyperentanglement distribution over arbitrary collective-noise channels [J].
Gao, Cheng-Yan ;
Wang, Guan-Yu ;
Zhang, Hao ;
Deng, Fu-Guo .
QUANTUM INFORMATION PROCESSING, 2017, 16 (01)
[50]   Robust quantum key distribution with two-photon polarization states [J].
Gao, Ming ;
Liang, Lin-Mei ;
Li, Cheng-Zu ;
Tian, Chen-Lin .
PHYSICS LETTERS A, 2006, 359 (02) :126-128