Quantum error rejection for faithful quantum communication over noise channels

被引:15
作者
Guo, Peng-Liang [1 ]
Gao, Cheng-Yan [1 ]
Li, Tao [2 ]
Li, Xi-Han [3 ]
Deng, Fu-Guo [1 ,4 ]
机构
[1] Beijing Normal Univ, Appl Opt Beijing Area Major Lab, Dept Phys, Beijing 100875, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Sci, Nanjing 210094, Jiangsu, Peoples R China
[3] Chongqing Univ, Dept Phys, Chongqing 400044, Peoples R China
[4] King Abdulaziz Univ, Fac Sci, Dept Math, NAAM Res Grp, Jeddah 21589, Saudi Arabia
来源
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY | 2019年 / 62卷 / 11期
基金
中国国家自然科学基金;
关键词
quantum state transmission; quantum error rejection; collective noise; ORBITAL ANGULAR-MOMENTUM; DECOHERENCE-FREE STATES; KEY DISTRIBUTION; QUBIT TRANSMISSION; ENTANGLEMENT PURIFICATION; OPTICAL COMMUNICATIONS; DOT SPINS; POLARIZATION; HYPERENTANGLEMENT; CRYPTOGRAPHY;
D O I
10.1007/s11433-019-9396-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum state transmission is a prerequisite for various quantum communication networks. The channel noise inevitably introduces distortion of quantum states passing through either a free-space channel or a fi bre channel, which leads to errors or decreases the security of a practical quantum communication network. Quantum error rejection is a useful technology to faithfully transmit quantum states over large-scale quantum channels. It provides the communication parties with an uncorrupted quantum state by rejecting error states. Usually, additional photons or degrees of freedom are required to overcome the adverse e ff ects of channel noise. As quantum error rejection method consumes less quantum resource than other anti-noise methods, it is more convenient to perform error-rejection quantum state transmission with current technology. In this review, several typical quantum errorrejection schemes for single-photon state transmission are introduced in brief and some error-rejection schemes for entanglement distribution are also brie fl y presented.
引用
收藏
页数:19
相关论文
共 203 条
[21]   Bit-flip-error rejection in optical quantum communication [J].
Bouwmeester, D .
PHYSICAL REVIEW A, 2001, 63 (04) :1-4
[22]   Pulsed energy-time enangled twin-photon source for quantum communication [J].
Brendel, J ;
Gisin, N ;
Tittel, W ;
Zbinden, H .
PHYSICAL REVIEW LETTERS, 1999, 82 (12) :2594-2597
[23]   Quantum Simulators [J].
Buluta, Iulia ;
Nori, Franco .
SCIENCE, 2009, 326 (5949) :108-111
[24]   Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system [J].
Cao, Cong ;
Duan, Yu-Wen ;
Chen, Xi ;
Zhang, Ru ;
Wang, Tie-Jun ;
Wang, Chuan .
OPTICS EXPRESS, 2017, 25 (15) :16931-16946
[25]   Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements [J].
Cao, Cong ;
Chen, Xi ;
Duan, YuWen ;
Fan, Ling ;
Zhang, Ru ;
Wang, TieJun ;
Wang, Chuan .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2016, 59 (10)
[26]   Quantum digital spiral imaging [J].
Chen, Lixiang ;
Lei, Jijin ;
Romero, Jacquiline .
LIGHT-SCIENCE & APPLICATIONS, 2014, 3 :e153-e153
[27]   Teleportation of a controllable orbital angular momentum generator [J].
Chen, Lixiang ;
She, Weilong .
PHYSICAL REVIEW A, 2009, 80 (06)
[28]   Three-step three-party quantum secure direct communication [J].
Chen, Shan-Shan ;
Zhou, Lan ;
Zhong, Wei ;
Sheng, Yu-Bo .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2018, 61 (09)
[29]   Experimental quantum communication without a shared reference frame [J].
Chen, TY ;
Zhang, J ;
Boileau, JC ;
Jin, XM ;
Yang, B ;
Zhang, Q ;
Yang, T ;
Laflamme, R ;
Pan, JW .
PHYSICAL REVIEW LETTERS, 2006, 96 (15)
[30]   Experimental quantum error rejection for quantum communication [J].
Chen, Yu-Ao ;
Zhang, An-Ning ;
Zhao, Zhi ;
Zhou, Xiao-Qi ;
Pan, Jian-Wei .
PHYSICAL REVIEW LETTERS, 2006, 96 (22)