Quantum error rejection for faithful quantum communication over noise channels

被引:15
作者
Guo, Peng-Liang [1 ]
Gao, Cheng-Yan [1 ]
Li, Tao [2 ]
Li, Xi-Han [3 ]
Deng, Fu-Guo [1 ,4 ]
机构
[1] Beijing Normal Univ, Appl Opt Beijing Area Major Lab, Dept Phys, Beijing 100875, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Sci, Nanjing 210094, Jiangsu, Peoples R China
[3] Chongqing Univ, Dept Phys, Chongqing 400044, Peoples R China
[4] King Abdulaziz Univ, Fac Sci, Dept Math, NAAM Res Grp, Jeddah 21589, Saudi Arabia
来源
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY | 2019年 / 62卷 / 11期
基金
中国国家自然科学基金;
关键词
quantum state transmission; quantum error rejection; collective noise; ORBITAL ANGULAR-MOMENTUM; DECOHERENCE-FREE STATES; KEY DISTRIBUTION; QUBIT TRANSMISSION; ENTANGLEMENT PURIFICATION; OPTICAL COMMUNICATIONS; DOT SPINS; POLARIZATION; HYPERENTANGLEMENT; CRYPTOGRAPHY;
D O I
10.1007/s11433-019-9396-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum state transmission is a prerequisite for various quantum communication networks. The channel noise inevitably introduces distortion of quantum states passing through either a free-space channel or a fi bre channel, which leads to errors or decreases the security of a practical quantum communication network. Quantum error rejection is a useful technology to faithfully transmit quantum states over large-scale quantum channels. It provides the communication parties with an uncorrupted quantum state by rejecting error states. Usually, additional photons or degrees of freedom are required to overcome the adverse e ff ects of channel noise. As quantum error rejection method consumes less quantum resource than other anti-noise methods, it is more convenient to perform error-rejection quantum state transmission with current technology. In this review, several typical quantum errorrejection schemes for single-photon state transmission are introduced in brief and some error-rejection schemes for entanglement distribution are also brie fl y presented.
引用
收藏
页数:19
相关论文
共 203 条
[91]   Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators [J].
Liu, Qian ;
Zhang, Mei .
PHYSICAL REVIEW A, 2015, 91 (06)
[92]   Secure quantum key distribution [J].
Lo, Hoi-Kwong ;
Curty, Marcos ;
Tamaki, Kiyoshi .
NATURE PHOTONICS, 2014, 8 (08) :595-604
[93]   Theoretically efficient high-capacity quantum-key-distribution scheme [J].
Long, GL ;
Liu, XS .
PHYSICAL REVIEW A, 2002, 65 (03) :3
[94]   Experimental realization of a concatenated Greenberger-Horne-Zeilinger state for macroscopic quantum superpositions [J].
Lu, He ;
Chen, Luo-Kan ;
Liu, Chang ;
Xu, Ping ;
Yao, Xing-Can ;
Li, Li ;
Liu, Nai-Le ;
Zhao, Bo ;
Chen, Yu-Ao ;
Pan, Jian-Wei .
NATURE PHOTONICS, 2014, 8 (05) :364-368
[95]   Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences [J].
Lu, Jing ;
Zhou, Lan ;
Kuang, Le-Man ;
Nori, Franco .
PHYSICAL REVIEW A, 2014, 89 (01)
[96]   Optical quantum memory [J].
Lvovsky, Alexander I. ;
Sanders, Barry C. ;
Tittel, Wolfgang .
NATURE PHOTONICS, 2009, 3 (12) :706-714
[97]   Phase-Matching Quantum Key Distribution [J].
Ma, Xiongfeng ;
Zeng, Pei ;
Zhou, Hongyi .
PHYSICAL REVIEW X, 2018, 8 (03)
[98]   A UNIVERSAL COMPENSATOR FOR POLARIZATION CHANGES INDUCED BY BIREFRINGENCE ON A RETRACING BEAM [J].
MARTINELLI, M .
OPTICS COMMUNICATIONS, 1989, 72 (06) :341-344
[99]   Faraday-Michelson system for quantum cryptography [J].
Mo, XF ;
Zhu, B ;
Han, ZF ;
Gui, YZ ;
Gun, GC .
OPTICS LETTERS, 2005, 30 (19) :2632-2634
[100]  
Nielsen M. A., 2010, Quantum Computation and Quantum Information, V10th