Quantum error rejection for faithful quantum communication over noise channels

被引:14
作者
Guo, Peng-Liang [1 ]
Gao, Cheng-Yan [1 ]
Li, Tao [2 ]
Li, Xi-Han [3 ]
Deng, Fu-Guo [1 ,4 ]
机构
[1] Beijing Normal Univ, Appl Opt Beijing Area Major Lab, Dept Phys, Beijing 100875, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Sci, Nanjing 210094, Jiangsu, Peoples R China
[3] Chongqing Univ, Dept Phys, Chongqing 400044, Peoples R China
[4] King Abdulaziz Univ, Fac Sci, Dept Math, NAAM Res Grp, Jeddah 21589, Saudi Arabia
来源
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY | 2019年 / 62卷 / 11期
基金
中国国家自然科学基金;
关键词
quantum state transmission; quantum error rejection; collective noise; ORBITAL ANGULAR-MOMENTUM; DECOHERENCE-FREE STATES; KEY DISTRIBUTION; QUBIT TRANSMISSION; ENTANGLEMENT PURIFICATION; OPTICAL COMMUNICATIONS; DOT SPINS; POLARIZATION; HYPERENTANGLEMENT; CRYPTOGRAPHY;
D O I
10.1007/s11433-019-9396-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum state transmission is a prerequisite for various quantum communication networks. The channel noise inevitably introduces distortion of quantum states passing through either a free-space channel or a fi bre channel, which leads to errors or decreases the security of a practical quantum communication network. Quantum error rejection is a useful technology to faithfully transmit quantum states over large-scale quantum channels. It provides the communication parties with an uncorrupted quantum state by rejecting error states. Usually, additional photons or degrees of freedom are required to overcome the adverse e ff ects of channel noise. As quantum error rejection method consumes less quantum resource than other anti-noise methods, it is more convenient to perform error-rejection quantum state transmission with current technology. In this review, several typical quantum errorrejection schemes for single-photon state transmission are introduced in brief and some error-rejection schemes for entanglement distribution are also brie fl y presented.
引用
收藏
页数:19
相关论文
共 203 条
[1]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[2]   Experimental investigation of a two-qubit decoherence-free subspace [J].
Altepeter, JB ;
Hadley, PG ;
Wendelken, SM ;
Berglund, AJ ;
Kwiat, PG .
PHYSICAL REVIEW LETTERS, 2004, 92 (14) :147901-1
[3]  
[Anonymous], 2016, PHYS REV A, DOI DOI 10.1103/PHYSREVA.94.022343
[4]   Quantum error correction beyond qubits [J].
Aoki, Takao ;
Takahashi, Go ;
Kajiya, Tadashi ;
Yoshikawa, Jun-ichi ;
Braunstein, Samuel L. ;
van Loock, Peter ;
Furusawa, Akira .
NATURE PHYSICS, 2009, 5 (08) :541-546
[5]   Quantum communication without alignment using multiple-qubit single-photon states [J].
Aolita, L. ;
Walborn, S. P. .
PHYSICAL REVIEW LETTERS, 2007, 98 (10)
[6]   Quantum technologies with optically interfaced solid-state spins [J].
Awschalom, David D. ;
Hanson, Ronald ;
Wrachtrup, Joerg ;
Zhou, Brian B. .
NATURE PHOTONICS, 2018, 12 (09) :516-527
[7]   Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement [J].
Barbieri, M. ;
Vallone, G. ;
Mataloni, P. ;
De Martini, F. .
PHYSICAL REVIEW A, 2007, 75 (04)
[8]  
Bennett C. H., 1984, Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, P175, DOI [10.1016/j.tcs.2011.08.039, DOI 10.1016/J.TCS.2014.05.025]
[9]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[10]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899