Multiscale modeling of lithium-ion battery electrodes based on nano-scale X-ray computed tomography

被引:102
作者
Kashkooli, Ali Ghorbani [1 ]
Farhad, Siamak [2 ]
Lee, Dong Un [1 ]
Feng, Kun [1 ]
Litster, Shawn [3 ]
Babu, Siddharth Komini [3 ]
Zhu, Likun [4 ]
Chen, Zhongwei [1 ,2 ]
机构
[1] Univ Waterloo, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada
[2] Univ Akron, Dept Mech Engn, Akron, OH 44325 USA
[3] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
[4] Indiana Univ Purdue Univ, Dept Mech Engn, Indianapolis, IN 46202 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Lithium-ion battery; Inhomogeneous electrodes; Micro/nanostructure; Multiscale modeling; X-ray computed tomography; HEAT-GENERATION; LICOO2; CATHODE; SIMULATION; DISCHARGE; DESIGN; ENERGY; CHARGE; QUANTIFICATION; DEGRADATION; TRANSPORT;
D O I
10.1016/j.jpowsour.2015.12.134
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A multiscale platform has been developed to model lithium ion battery (LIB) electrodes based on the real microstructure morphology. This multiscale framework consists of a microscale level where the electrode microstructure architecture is modeled and a macroscale level where discharge/charge is simulated. The coupling between two scales are performed in real time unlike using common surrogate based models for microscale. For microscale geometry 3D microstructure is reconstructed based on the nano-scale X-ray computed tomography data replacing typical computer generated microstructure. It is shown that this model can predict the experimental performance of LiFePO4 (LFP) cathode at different discharge rates more accurate than the conventional homogenous models. The approach employed in this study provides valuable insight into the spatial distribution of lithium -ion inside the real microstructure of LIB electrodes. The inhomogenous microstructure of LFP causes a wider range of physical and electrochemical properties in microscale compared to homogenous models. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:496 / 509
页数:14
相关论文
共 54 条
[1]  
Chabot V., 2007, INT J ENERG RES, V31, P135, DOI [10.1002/er, DOI 10.1002/ER]
[2]   Particle Size Polydispersity in Li-Ion Batteries [J].
Chung, Ding-Wen ;
Shearing, Paul R. ;
Brandon, Nigel P. ;
Harris, Stephen J. ;
Garcia, R. Edwin .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (03) :A422-A430
[3]   Validity of the Bruggeman relation for porous electrodes [J].
Chung, Ding-Wen ;
Ebner, Martin ;
Ely, David R. ;
Wood, Vanessa ;
Garcia, R. Edwin .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2013, 21 (07)
[4]   Image based modelling of microstructural heterogeneity in LiFePO4 electrodes for Li-ion batteries [J].
Cooper, S. J. ;
Eastwood, D. S. ;
Gelb, J. ;
Damblanc, G. ;
Brett, D. J. L. ;
Bradley, R. S. ;
Withers, P. J. ;
Lee, P. D. ;
Marquis, A. J. ;
Brandon, N. P. ;
Shearing, P. R. .
JOURNAL OF POWER SOURCES, 2014, 247 :1033-1039
[5]   Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model [J].
Delmas, C. ;
Maccario, M. ;
Croguennec, L. ;
Le Cras, F. ;
Weill, F. .
NATURE MATERIALS, 2008, 7 (08) :665-671
[6]   Microstructural design considerations for Li-ion battery systems [J].
Dillon, Shen J. ;
Sun, Ke .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2012, 16 (04) :153-162
[7]   MODELING OF GALVANOSTATIC CHARGE AND DISCHARGE OF THE LITHIUM POLYMER INSERTION CELL [J].
DOYLE, M ;
FULLER, TF ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (06) :1526-1533
[8]   THE USE OF MATHEMATICAL-MODELING IN THE DESIGN OF LITHIUM POLYMER BATTERY SYSTEMS [J].
DOYLE, M ;
NEWMAN, J .
ELECTROCHIMICA ACTA, 1995, 40 (13-14) :2191-2196
[9]   A Surrogate-Based Multi-Scale Model for Mass Transport and Electrochemical Kinetics in Lithium-Ion Battery Electrodes [J].
Du, Wenbo ;
Xue, Nansi ;
Shyy, Wei ;
Martins, Joaquim R. R. A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (08) :E3086-E3096
[10]   The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction [J].
Dunn, J. B. ;
Gaines, L. ;
Kelly, J. C. ;
James, C. ;
Gallagher, K. G. .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (01) :158-168