High-Performance Anode of Sodium Ion Battery from Polyacrylonitrile/Humic Acid Composite Electrospun Carbon Fiberse

被引:44
作者
Zhao, Pin-Yi [1 ,2 ]
Yu, Bao-Jun [1 ,2 ]
Sun, Shuai [3 ]
Guo, Yan [1 ,2 ]
Chang, Zhen-Zhen [1 ,2 ]
Li, Qi [1 ,2 ]
Wang, Cheng-Yang [1 ,2 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Key Lab Green Chem Technol, Minist Educ, Tianjin 300072, Peoples R China
[2] Collaborat Innovat Ctr Chem Sci & Engn, Tianjin 300072, Peoples R China
[3] Chengde Petr Coll, Dept Chem Engn, Chengde 067000, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
Humic acid; Carbon fibers; Sodium ion batteries; Electrospinning; BINDER-FREE ELECTRODES; HARD-CARBON; LITHIUM-ION; HUMIC ACIDS; ELECTROCHEMICAL INSERTION; X-RAY; NANOFIBERS; CAPACITY; GRAPHENE; STORAGE;
D O I
10.1016/j.electacta.2017.02.159
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Humic acid is creatively selected as an anode material in sodium ion batteries. Bio-based carbon fibers (H-CF) are fabricated from polyacrylonitrile (PAN) - humic acid (HA) via simple eletrospinning followed by stabilization and carbonization. The heat-treatment temperature (HTT) is optimized based on analysis of material structures and electrochemical performances. Due to unique composite networks and oxygenic functionalities, the H-CF anode obtained at 1300 degrees C has a large reversible capacity of 261.3 mAh g(-1) (current density: 0.02 A g(-1), initial efficiency: 69.6%). The anode also presents good cycle stability (249.6 mAh g(-1) reversible capacity at 0.1 A g(-1) with capacity retention of 92.8% over 100 cycles) and good rate capability (208.6 mAh g g(-1) at 0.2 A g(-1) and 81.7 mAh g g(-1) at 1 A g g(-1)). It is proved that humic acid can serve as a robust precursor for high-performance anode of sodium ion batteries. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:348 / 356
页数:9
相关论文
共 71 条
[1]   Electrochemical, textural and microstructural effects of mechanical grinding on graphitized petroleum coke for lithium and sodium batteries [J].
Alcántara, R ;
Lavela, P ;
Ortiz, GF ;
Tirado, JL ;
Menéndez, R ;
Santamaría, R ;
Jiménez-Mateos, JM .
CARBON, 2003, 41 (15) :3003-3013
[2]   Carbon black:: a promising electrode material for sodium-ion batteries [J].
Alcántara, R ;
Jiménez-Mateos, JM ;
Lavela, P ;
Tirado, JL .
ELECTROCHEMISTRY COMMUNICATIONS, 2001, 3 (11) :639-642
[3]  
[Anonymous], 2004, ORGANIC MATTER HUMUS
[4]   An X-ray study of carbon black [J].
Biscoe, J ;
Warren, BE .
JOURNAL OF APPLIED PHYSICS, 1942, 13 (06) :364-371
[5]   Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements [J].
Bommier, Clement ;
Luo, Wei ;
Gao, Wen-Yang ;
Greaney, Alex ;
Ma, Shengqian ;
Ji, Xiulei .
CARBON, 2014, 76 :165-174
[6]   On the reduction of lithium insertion capacity in hard-carbon anode materials with increasing heat-treatment temperature [J].
Buiel, E ;
George, AE ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (07) :2252-2257
[7]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[8]   Modification of polyacrylonitrile (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethyl formamide (DMF) [J].
Chen, JC ;
Harrison, IR .
CARBON, 2002, 40 (01) :25-45
[9]   Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance [J].
Chen, Taiqiang ;
Liu, Yong ;
Pan, Likun ;
Lu, Ting ;
Yao, Yefeng ;
Sun, Zhuo ;
Chua, Daniel H. C. ;
Chen, Qun .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (12) :4117-4121
[10]   Fast synthesis of carbon microspheres via a microwave-assisted reaction for sodium ion batteries [J].
Chen, Taiqiang ;
Pan, Likun ;
Lu, Ting ;
Fu, Conglong ;
Chua, Daniel H. C. ;
Sun, Zhuo .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (05) :1263-1267