A posteriori error estimates for elliptic problems with Dirac delta source terms

被引:46
作者
Araya, Rodolfo
Behrens, Edwin
Rodriguez, Rodolfo
机构
[1] Univ Concepcion, Dep Ingn Matemat, Concepcion, Chile
[2] Univ Catolica Santisima Concepcion, Fac Ingn, Concepcion, Chile
关键词
D O I
10.1007/s00211-006-0041-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to introduce residual type a posteriori error estimators for a Poisson problem with a Dirac delta source term, in L-p norm and W-1,W-p seminorm. The estimators are proved to yield global upper and local lower bounds for the corresponding norms of the error. They are used to guide adaptive procedures, which are experimentally shown to lead to optimal orders of convergence.
引用
收藏
页码:193 / 216
页数:24
相关论文
共 12 条
[1]   Remarks around 50 lines of Matlab: short finite element implementation [J].
Alberty, J ;
Carstensen, C ;
Funken, SA .
NUMERICAL ALGORITHMS, 1999, 20 (2-3) :117-137
[2]   DIRECT AND INVERSE ERROR-ESTIMATES FOR FINITE-ELEMENTS WITH MESH REFINEMENTS [J].
BABUSKA, I ;
KELLOGG, RB ;
PITKARANTA, J .
NUMERISCHE MATHEMATIK, 1979, 33 (04) :447-471
[3]  
BRENNER S. C., 1994, TEXTS APPL MATH, V15
[5]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[6]   NEUMANN AND MIXED PROBLEMS ON CURVILINEAR POLYHEDRA [J].
DAUGE, M .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1992, 15 (02) :227-261
[7]  
Grisvard P., 1985, ELLIPTIC PROBLEMS NO, V24
[8]   Local a Posteriori error estimates and adaptive control of pollution effects [J].
Liao, XH ;
Nochetto, RH .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2003, 19 (04) :421-442
[9]  
SCHATZ AH, 1977, MATH COMPUT, V31, P414, DOI 10.1090/S0025-5718-1977-0431753-X
[10]   FINITE-ELEMENT CONVERGENCE FOR SINGULAR DATA [J].
SCOTT, R .
NUMERISCHE MATHEMATIK, 1973, 21 (04) :317-327