Estimating and controlling for spatial structure in the study of ecological communities

被引:361
作者
Peres-Neto, Pedro R. [1 ]
Legendre, Pierre [2 ]
机构
[1] Univ Quebec, Dept Sci Biol, Montreal, PQ H3C 3P8, Canada
[2] Univ Montreal, Dept Sci Biol, Montreal, PQ H3C 3J7, Canada
来源
GLOBAL ECOLOGY AND BIOGEOGRAPHY | 2010年 / 19卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
Community analysis; eigenvector maps; model selection; spatial autocorrelation; spatial correlation; spatial predictors; variation partitioning; SPECIES RICHNESS; BETA DIVERSITY; AUTOCORRELATION; SELECTION; INFERENCE; MATRICES; PATTERN; TESTS;
D O I
10.1111/j.1466-8238.2009.00506.x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Aim Variation partitioning based on canonical analysis is the most commonly used analysis to investigate community patterns according to environmental and spatial predictors. Ecologists use this method in order to understand the pure contribution of the environment independent of space, and vice versa, as well as to control for inflated type I error in assessing the environmental component under spatial autocorrelation. Our goal is to use numerical simulations to compare how different spatial predictors and model selection procedures perform in assessing the importance of the spatial component and in controlling for type I error while testing environmental predictors. Innovation We determine for the first time how the ability of commonly used (polynomial regressors) and novel methods based on eigenvector maps compare in the realm of spatial variation partitioning. We introduce a novel forward selection procedure to select spatial regressors for community analysis. Finally, we point out a number of issues that have not been previously considered about the joint explained variation between environment and space, which should be taken into account when reporting and testing the unique contributions of environment and space in patterning ecological communities. Main conclusions In tests of species-environment relationships, spatial autocorrelation is known to inflate the level of type I error and make the tests of significance invalid. First, one must determine if the spatial component is significant using all spatial predictors (Moran's eigenvector maps). If it is, consider a model selection for the set of spatial predictors (an individual-species forward selection procedure is to be preferred) and use the environmental and selected spatial predictors in a partial regression or partial canonical analysis scheme. This is an effective way of controlling for type I error in such tests. Polynomial regressors do not provide tests with a correct level of type I error.
引用
收藏
页码:174 / 184
页数:11
相关论文
共 46 条
[1]   Partitioning the variation among spatial, temporal and environmental components in a multivariate data set [J].
Anderson, MJ ;
Gribble, NA .
AUSTRALIAN JOURNAL OF ECOLOGY, 1998, 23 (02) :158-167
[2]   Using patch isolation metrics to predict animal movement in binary landscapes [J].
Bender, DJ ;
Tischendorf, L ;
Fahrig, L .
LANDSCAPE ECOLOGY, 2003, 18 (01) :17-39
[3]   Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression [J].
Bini, L. Mauricio ;
Diniz-Filho, J. Alexandre F. ;
Rangel, Thiago F. L. V. B. ;
Akre, Thomas S. B. ;
Albaladejo, Rafael G. ;
Albuquerque, Fabio S. ;
Aparicio, Abelardo ;
Araujo, Miguel B. ;
Baselga, Andres ;
Beck, Jan ;
Isabel Bellocq, M. ;
Boehning-Gaese, Katrin ;
Borges, Paulo A. V. ;
Castro-Parga, Isabel ;
Chey, Vun Khen ;
Chown, Steven L. ;
de Marco, Paulo, Jr. ;
Dobkin, David S. ;
Ferrer-Castan, Dolores ;
Field, Richard ;
Filloy, Julieta ;
Fleishman, Erica ;
Gomez, Jose F. ;
Hortal, Joaquin ;
Iverson, John B. ;
Kerr, Jeremy T. ;
Kissling, W. Daniel ;
Kitching, Ian J. ;
Leon-Cortes, Jorge L. ;
Lobo, Jorge M. ;
Montoya, Daniel ;
Morales-Castilla, Ignacio ;
Moreno, Juan C. ;
Oberdorff, Thierry ;
Olalla-Tarraga, Miguel A. ;
Pausas, Juli G. ;
Qian, Hong ;
Rahbek, Carsten ;
Rodriguez, Miguel A. ;
Rueda, Marta ;
Ruggiero, Adriana ;
Sackmann, Paula ;
Sanders, Nathan J. ;
Terribile, Levi Carina ;
Vetaas, Ole R. ;
Hawkins, Bradford A. .
ECOGRAPHY, 2009, 32 (02) :193-204
[4]  
Bivand R., 1980, QUAEST GEOGR, V6, P5
[5]   Forward selection of explanatory variables [J].
Blanchet, F. Guillaume ;
Legendre, Pierre ;
Borcard, Daniel .
ECOLOGY, 2008, 89 (09) :2623-2632
[6]   All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices [J].
Borcard, D ;
Legendre, P .
ECOLOGICAL MODELLING, 2002, 153 (1-2) :51-68
[7]   Dissecting the spatial structure of ecological data at multiple scales [J].
Borcard, D ;
Legendre, P ;
Avois-Jacquet, C ;
Tuomisto, H .
ECOLOGY, 2004, 85 (07) :1826-1832
[8]   PARTIALLING OUT THE SPATIAL COMPONENT OF ECOLOGICAL VARIATION [J].
BORCARD, D ;
LEGENDRE, P ;
DRAPEAU, P .
ECOLOGY, 1992, 73 (03) :1045-1055
[9]   Elicitation by design in ecology: using expert opinion to inform priors for Bayesian statistical models [J].
Choy, Samantha Low ;
O'Leary, Rebecca ;
Mengersen, Kerrie .
ECOLOGY, 2009, 90 (01) :265-277
[10]   Integrating environmental and spatial processes in ecological community dynamics [J].
Cottenie, K .
ECOLOGY LETTERS, 2005, 8 (11) :1175-1182