Distributed Computability in Byzantine Asynchronous Systems

被引:15
|
作者
Mendes, Hammurabi [1 ]
Tasson, Christine [2 ]
Herlihy, Maurice [1 ]
机构
[1] Brown Univ, Dept Comp Sci, Providence, RI 02912 USA
[2] Univ Paris Diderot, Sorbonne Paris Cite, Paris, France
来源
STOC'14: PROCEEDINGS OF THE 46TH ANNUAL 2014 ACM SYMPOSIUM ON THEORY OF COMPUTING | 2014年
关键词
computability; combinatorial topology; Byzantine failures; asynchronous systems; colorless tasks; SET CONSENSUS PROBLEMS; AGREEMENT;
D O I
10.1145/2591796.2591853
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this work, we extend the topology-based approach for characterizing computability in asynchronous crash-failure distributed systems to asynchronous Byzantine systems. We give the first theorem with necessary and sufficient conditions to solve arbitrary tasks in asynchronous Byzantine systems where an adversary chooses faulty processes. For colorless tasks, an important subclass of distributed problems, the general result reduces to an elegant model that effectively captures the relation between the number of processes, the number of failures, as well as the topological structure of the task's simplicial complexes.
引用
收藏
页码:704 / 713
页数:10
相关论文
共 50 条
  • [21] Genuinely distributed Byzantine machine learning
    El-Mhamdi, El-Mahdi
    Guerraoui, Rachid
    Guirguis, Arsany
    Hoang, Le-Nguyen
    Rouault, Sebastien
    DISTRIBUTED COMPUTING, 2022, 35 (04) : 305 - 331
  • [22] Byzantine quorum systems
    Malkhi, D
    Reiter, M
    DISTRIBUTED COMPUTING, 1998, 11 (04) : 203 - 213
  • [23] Computability of entropy and information in classical Hamiltonian systems
    Kim, Sungyun
    PHYSICS LETTERS A, 2009, 373 (16) : 1409 - 1414
  • [24] Complexity and mission computability of adaptive computing systems
    Dasari, Venkat R.
    Im, Mee Seong
    Geerhart, Billy
    JOURNAL OF DEFENSE MODELING AND SIMULATION-APPLICATIONS METHODOLOGY TECHNOLOGY-JDMS, 2022, 19 (01): : 5 - 11
  • [25] Collaborative Learning in the Jungle (Decentralized, Byzantine, Heterogeneous, Asynchronous and Nonconvex Learning)
    El-Mhamdi, El-Mandi
    Farhadkhani, Sadegh
    Guerraoui, Rachid
    Guirguis, Arsany
    Le-Nguyen Hoang
    Rouault, Sebastien
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [26] The timed asynchronous distributed system model
    Cristian, F
    Fetzer, C
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1999, 10 (06) : 642 - 657
  • [27] Synchronous Byzantine quorum systems
    Bazzi, RA
    DISTRIBUTED COMPUTING, 2000, 13 (01) : 45 - 52
  • [28] Computability of affine non-conditional recurrent systems
    Saouter, Y
    Le Verge, H
    INFORMATION PROCESSING LETTERS, 1999, 69 (06) : 291 - 295
  • [29] A Study on Byzantine Fault Tolerance Methods in Distributed Networks
    Nasreen, M. A.
    Ganesh, Amal
    Sunitha, C.
    FOURTH INTERNATIONAL CONFERENCE ON RECENT TRENDS IN COMPUTER SCIENCE & ENGINEERING (ICRTCSE 2016), 2016, 87 : 50 - 54
  • [30] Faster asynchronous systems
    Vogler, W
    INFORMATION AND COMPUTATION, 2003, 184 (02) : 311 - 342