Estimating sparse models from multivariate discrete data via transformed Lasso

被引:0
作者
Roos, Teemu [1 ]
Yu, Bin [2 ]
机构
[1] Univ Helsinki, HIIT, FIN-00014 Helsinki, Finland
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
来源
2009 INFORMATION THEORY AND APPLICATIONS WORKSHOP | 2009年
基金
芬兰科学院;
关键词
REGRESSION; SELECTION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The type of l(1) norm regularization used in Lasso and related methods typically yields sparse parameter estimates where most of the estimates are equal to zero. We study a class of estimators obtained by applying a linear transformation on the parameter vector before evaluating the l(1) norm. The resulting "transformed Lasso" yields estimates that are "smooth" in a way that depends on the applied transformation. The optimization problem is convex and can be solved efficiently using existing tools. We present two examples: the Haar transform which corresponds to variable length Markov chain (context-tree) models, and the Walsh-Hadamard transform which corresponds to linear combinations of XOR (parity) functions of binary input features.
引用
收藏
页码:287 / +
页数:2
相关论文
共 36 条
[31]   Learning From Limited Temporal Data: Dynamically Sparse Historical Functional Linear Models With Applications to Earth Science [J].
Janssen, Joseph ;
Meng, Shizhe ;
Haris, Asad ;
Schrunner, Stefan ;
Cao, Jiguo ;
Welch, William J. ;
Kunz, Nadja ;
Ameli, Ali A. .
ENVIRONMETRICS, 2025, 36 (04)
[32]   Group-Sparse SVD Models via L1- and L0-norm Penalties and their Applications in Biological Data [J].
Min, Wenwen ;
Liu, Juan ;
Zhang, Shihua .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (02) :536-550
[33]   A data-driven iterative refinement approach for estimating clearing functions from simulation models of production systems [J].
Gopalswamy, Karthick ;
Uzsoy, Reha .
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2019, 57 (19) :6013-6030
[34]   IDENTIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS-BASED MODELS FROM NOISY DATA VIA SPLINES [J].
Zhao, Yujie ;
Huo, Xiaoming ;
Mei, Yajun .
STATISTICA SINICA, 2024, 34 (03) :1461-1482
[35]   Prognosis of lasso-like penalized Cox models with tumor profiling improves prediction over clinical data alone and benefits from bi-dimensional pre-screening [J].
Jardillier, Remy ;
Koca, Dzenis ;
Chatelain, Florent ;
Guyon, Laurent .
BMC CANCER, 2022, 22 (01)
[36]   Comparing Canopy Height Models from Regional-Scale Aerial Photogrammetry with Global Spaceborne Lidar-Derived Data for Estimating Forest Volume and Biomass [J].
Cao, Qianqian ;
Radtke, Philip J. ;
Coulston, John W. ;
Thomas, Valerie A. ;
Wynne, Randolph H. ;
Walker, David M. .
FOREST SCIENCE, 2025,