共 36 条
Estimating sparse models from multivariate discrete data via transformed Lasso
被引:0
作者:
Roos, Teemu
[1
]
Yu, Bin
[2
]
机构:
[1] Univ Helsinki, HIIT, FIN-00014 Helsinki, Finland
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
来源:
2009 INFORMATION THEORY AND APPLICATIONS WORKSHOP
|
2009年
基金:
芬兰科学院;
关键词:
REGRESSION;
SELECTION;
D O I:
暂无
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
The type of l(1) norm regularization used in Lasso and related methods typically yields sparse parameter estimates where most of the estimates are equal to zero. We study a class of estimators obtained by applying a linear transformation on the parameter vector before evaluating the l(1) norm. The resulting "transformed Lasso" yields estimates that are "smooth" in a way that depends on the applied transformation. The optimization problem is convex and can be solved efficiently using existing tools. We present two examples: the Haar transform which corresponds to variable length Markov chain (context-tree) models, and the Walsh-Hadamard transform which corresponds to linear combinations of XOR (parity) functions of binary input features.
引用
收藏
页码:287 / +
页数:2
相关论文
共 36 条