Estimating sparse models from multivariate discrete data via transformed Lasso

被引:0
作者
Roos, Teemu [1 ]
Yu, Bin [2 ]
机构
[1] Univ Helsinki, HIIT, FIN-00014 Helsinki, Finland
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
来源
2009 INFORMATION THEORY AND APPLICATIONS WORKSHOP | 2009年
基金
芬兰科学院;
关键词
REGRESSION; SELECTION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The type of l(1) norm regularization used in Lasso and related methods typically yields sparse parameter estimates where most of the estimates are equal to zero. We study a class of estimators obtained by applying a linear transformation on the parameter vector before evaluating the l(1) norm. The resulting "transformed Lasso" yields estimates that are "smooth" in a way that depends on the applied transformation. The optimization problem is convex and can be solved efficiently using existing tools. We present two examples: the Haar transform which corresponds to variable length Markov chain (context-tree) models, and the Walsh-Hadamard transform which corresponds to linear combinations of XOR (parity) functions of binary input features.
引用
收藏
页码:287 / +
页数:2
相关论文
共 36 条
[21]   Detecting sparse microbial association signals adaptively from longitudinal microbiome data based on generalized estimating equations [J].
Sun, Han ;
Huang, Xiaoyun ;
Huo, Ban ;
Tan, Yuting ;
He, Tingting ;
Jiang, Xingpeng .
BRIEFINGS IN BIOINFORMATICS, 2022, 23 (05)
[22]   Identifying main effects and epistatic interactions from large-scale SNP data via adaptive group Lasso [J].
Yang, Can ;
Wan, Xiang ;
Yang, Qiang ;
Xue, Hong ;
Yu, Weichuan .
BMC BIOINFORMATICS, 2010, 11
[23]   Inference of Causal Networks from Time-Varying Transcriptome Data via Sparse Coding [J].
Zhang, Kai ;
Han, Ju ;
Groesser, Torsten ;
Fontenay, Gerald ;
Parvin, Bahram .
PLOS ONE, 2012, 7 (08)
[24]   From dense to sparse design: Optimal rates under the supremum norm for estimating the mean function in functional data analysis [J].
Berger, Max ;
Hermann, Philipp ;
Holzmann, Hajo .
BERNOULLI, 2025, 31 (03) :1858-1888
[25]   Estimating prey abundance and distribution from camera trap data using binomial mixture models [J].
Kafley, Hemanta ;
Lamichhane, Babu R. ;
Maharjan, Rupak ;
Thapaliya, Bishnu ;
Bhattarai, Nishan ;
Khadka, Madhav ;
Gompper, Matthew E. .
EUROPEAN JOURNAL OF WILDLIFE RESEARCH, 2019, 65 (05)
[26]   Learning Sparse High-Dimensional Matrix-Valued Graphical Models From Dependent Data [J].
Tugnait, Jitendra K. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 :3363-3379
[27]   Dynamic Bayesian Network Learning to Infer Sparse Models From Time Series Gene Expression Data [J].
Ajmal, Hamda B. ;
Madden, Michael G. .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (05) :2794-2805
[28]   Direct interaction network and differential network inference from compositional data via lasso penalized D-trace loss [J].
He, Shun ;
Deng, Minghua .
PLOS ONE, 2019, 14 (07)
[29]   Inference of dynamic systems from noisy and sparse data via manifold-constrained Gaussian processes [J].
Yang, Shihao ;
Wong, Samuel W. K. ;
Kou, S. C. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (15)
[30]   Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning [J].
Wang, Hua ;
Nie, Feiping ;
Huang, Heng ;
Risacher, Shannon L. ;
Saykin, Andrew J. ;
Shen, Li .
BIOINFORMATICS, 2012, 28 (12) :I127-I136