A fast and efficient colocalization algorithm for identifying shared genetic risk factors across multiple traits

被引:206
作者
Foley, Christopher N. [1 ,2 ]
Staley, James R. [2 ,3 ]
Breen, Philip G. [4 ]
Sun, Benjamin B. [2 ]
Kirk, Paul D. W. [1 ]
Burgess, Stephen [1 ,2 ]
Howson, Joanna M. M. [2 ,5 ,6 ,7 ]
机构
[1] Univ Cambridge, Cambridge Inst Publ Hlth, MRC Biostat Unit, Cambridge CB2 0SR, England
[2] Univ Cambridge, Dept Publ Hlth & Primary Care, Cardiovasc Epidemiol Unit, Cambridge CB1 8RN, England
[3] Univ Bristol, Bristol Med Sch, MRC Integrat Epidemiol Unit, Populat Hlth Sci, Bristol, Avon, England
[4] Univ Edinburgh, Sch Math, Kings Bldg, Edinburgh EH9 3JZ, Midlothian, Scotland
[5] Univ Cambridge, Cambridge Biomed Res Ctr, Natl Inst Hlth Res, Cambridge, England
[6] Cambridge Univ Hosp, Cambridge, England
[7] Novo Nordisk Res Ctr Oxford, Dept Genet, Oxford, England
基金
英国医学研究理事会;
关键词
GENOME-WIDE ASSOCIATION; INTIMA-MEDIA THICKNESS; LOCI; IDENTIFICATION; STATISTICS; EXPRESSION; VARIANTS; GENOTYPE; SIGNALS;
D O I
10.1038/s41467-020-20885-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Genome-wide association studies (GWAS) have identified thousands of genomic regions affecting complex diseases. The next challenge is to elucidate the causal genes and mechanisms involved. One approach is to use statistical colocalization to assess shared genetic aetiology across multiple related traits (e.g. molecular traits, metabolic pathways and complex diseases) to identify causal pathways, prioritize causal variants and evaluate pleiotropy. We propose HyPrColoc (Hypothesis Prioritisation for multi-trait Colocalization), an efficient deterministic Bayesian algorithm using GWAS summary statistics that can detect colocalization across vast numbers of traits simultaneously (e.g. 100 traits can be jointly analysed in around 1s). We perform a genome-wide multi-trait colocalization analysis of coronary heart disease (CHD) and fourteen related traits, identifying 43 regions in which CHD colocalized with >= 1 trait, including 5 previously unknown CHD loci. Across the 43 loci, we further integrate gene and protein expression quantitative trait loci to identify candidate causal genes. Statistical colocalisation is a method to identify causal genes and shared genetic aetiology across traits. Here, the authors describe HyPrColoc, an efficient Bayesian divisive clustering algorithm which integrates summary statistics from genome-wide association studies to detect clusters of colocalised traits from large numbers of traits.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] A fast and high performance multiple data integration algorithm for identifying human disease genes
    Chen, Bolin
    Li, Min
    Wang, Jianxin
    Shang, Xuequn
    Wu, Fang-Xiang
    BMC MEDICAL GENOMICS, 2015, 8
  • [32] Polygenic overlap and shared genetic loci between loneliness, severe mental disorders, and cardiovascular disease risk factors suggest shared molecular mechanisms
    Rodevand, Linn
    Bahrami, Shahram
    Frei, Oleksandr
    Lin, Aihua
    Gani, Osman
    Shadrin, Alexey
    Smeland, Olav B.
    Connell, Kevin S. O'
    Elvsashagen, Torbjorn
    Winterton, Adriano
    Quintana, Daniel S.
    Hindley, Guy F. L.
    Werner, Maren C. F.
    Djurovic, Srdjan
    Dale, Anders M.
    Lagerberg, Trine V.
    Steen, Nils Eiel
    Andreassen, Ole A.
    TRANSLATIONAL PSYCHIATRY, 2021, 11 (01)
  • [33] Investigation of Shared Genetic Risk Factors Between Parkinson's Disease and Cancers
    Sugier, Pierre-Emmanuel
    Lucotte, Elise A.
    Domenighetti, Cloe
    Law, Matthew H.
    Iles, Mark M.
    Brown, Kevin
    Amos, Christopher
    McKay, James D.
    Hung, Rayjean J.
    Karimi, Mojgan
    Bacq-Daian, Delphine
    Boland-Auge, Anne
    Olaso, Robert
    Deleuze, Jean-francois
    Lesueur, Fabienne
    Ostroumova, Evgenia
    Kesminiene, Ausrele
    de Vathaire, Florent
    Guenel, Pascal
    Sreelatha, Ashwin Ashok Kumar
    Schulte, Claudia
    Grover, Sandeep
    May, Patrick
    Bobbili, Dheeraj R.
    Radivojkov-Blagojevic, Milena
    Lichtner, Peter
    Singleton, Andrew B.
    Hernandez, Dena G.
    Edsall, Connor
    Mellick, George D.
    Zimprich, Alexander
    Pirker, Walter
    Rogaeva, Ekaterina
    Lang, Anthony E.
    Koks, Sulev
    Taba, Pille
    Lesage, Suzanne
    Brice, Alexis
    Corvol, Jean-Christophe
    Chartier-Harlin, Marie-Christine
    Mutez, Eugenie
    Brockmann, Kathrin
    Deutschlaender, Angela B.
    Hadjigeorgiou, Georges M.
    Dardiotis, Efthimios
    Stefanis, Leonidas
    Simitsi, Athina Maria
    Valente, Enza Maria
    Petrucci, Simona
    Straniero, Letizia
    MOVEMENT DISORDERS, 2023, 38 (04) : 604 - 615
  • [34] Shared genetic factors influence risk for bipolar disorder and alcohol use disorders
    Carmiol, N.
    Peralta, J. M.
    Almasy, L.
    Contreras, J.
    Pacheco, A.
    Escamilla, M. A.
    Knowles, E. E. M.
    Raventos, H.
    Glahn, D. C.
    EUROPEAN PSYCHIATRY, 2014, 29 (05) : 282 - 287
  • [35] An Efficient Stepwise Statistical Test to Identify Multiple Linked Human Genetic Variants Associated with Specific Phenotypic Traits
    Huh, Iksoo
    Kwon, Min-Seok
    Park, Taesung
    PLOS ONE, 2015, 10 (09):
  • [36] Sleep-related traits and attention-deficit/hyperactivity disorder comorbidity: Shared genetic risk factors, molecular mechanisms, and causal effects
    Carpena, Marina Xavier
    Bonilla, Carolina
    Matijasevich, Alicia
    Martins-Silva, Thais
    Genro, Julia P.
    Hutz, Mara Helena
    Rohde, Luis Augusto
    Tovo-Rodrigues, Luciana
    WORLD JOURNAL OF BIOLOGICAL PSYCHIATRY, 2021, 22 (10) : 778 - 791
  • [37] Genome-wide association study of pediatric obsessive-compulsive traits: shared genetic risk between traits and disorder
    Burton, Christie L.
    Lemire, Mathieu
    Xiao, Bowei
    Corfield, Elizabeth C.
    Erdman, Lauren
    Bralten, Janita
    Poelmans, Geert
    Yu, Dongmei
    Shaheen, S-M
    Goodale, Tara
    Sinopoli, Vanessa M.
    Soreni, Noam
    Hanna, Gregory L.
    Fitzgerald, Kate D.
    Rosenberg, David
    Nestadt, Gerald
    Paterson, Andrew D.
    Strug, Lisa J.
    Schachar, Russell J.
    Crosbie, Jennifer
    Arnold, Paul D.
    TRANSLATIONAL PSYCHIATRY, 2021, 11 (01)
  • [38] Identification of Novel Genetic Risk Loci in Maltese Dogs with Necrotizing Meningoencephalitis and Evidence of a Shared Genetic Risk across Toy Dog Breeds
    Schrauwen, Isabelle
    Barber, Renee M.
    Schatzberg, Scott J.
    Siniard, Ashley L.
    Corneveaux, Jason J.
    Porter, Brian F.
    Vernau, Karen M.
    Keesler, Rebekah I.
    Matiasek, Kaspar
    Flegel, Thomas
    Miller, Andrew D.
    Southard, Teresa
    Mariani, Christopher L.
    Johnson, Gayle C.
    Huentelman, Matthew J.
    PLOS ONE, 2014, 9 (11):
  • [39] Estimating the Relative Contribution of Environmental and Genetic Risk Factors to Different Aging Traits by Combining Correlated Variables into Weighted Risk Scores
    Wigmann, Claudia
    Huls, Anke
    Krutmann, Jean
    Schikowski, Tamara
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (24)
  • [40] Genetic Factors Underlying the Risk of Thalidomide-Related Neuropathy in Patients With Multiple Myeloma
    Johnson, David C.
    Corthals, Sophie L.
    Walker, Brian A.
    Ross, Fiona M.
    Gregory, Walter M.
    Dickens, Nicholas J.
    Lokhorst, Henk M.
    Goldschmidt, Hartmut
    Davies, Faith E.
    Durie, Brian G. M.
    Van Ness, Brian
    Child, J. Anthony
    Sonneveld, Pieter
    Morgan, Gareth J.
    JOURNAL OF CLINICAL ONCOLOGY, 2011, 29 (07) : 797 - 804