A fast and efficient colocalization algorithm for identifying shared genetic risk factors across multiple traits

被引:205
|
作者
Foley, Christopher N. [1 ,2 ]
Staley, James R. [2 ,3 ]
Breen, Philip G. [4 ]
Sun, Benjamin B. [2 ]
Kirk, Paul D. W. [1 ]
Burgess, Stephen [1 ,2 ]
Howson, Joanna M. M. [2 ,5 ,6 ,7 ]
机构
[1] Univ Cambridge, Cambridge Inst Publ Hlth, MRC Biostat Unit, Cambridge CB2 0SR, England
[2] Univ Cambridge, Dept Publ Hlth & Primary Care, Cardiovasc Epidemiol Unit, Cambridge CB1 8RN, England
[3] Univ Bristol, Bristol Med Sch, MRC Integrat Epidemiol Unit, Populat Hlth Sci, Bristol, Avon, England
[4] Univ Edinburgh, Sch Math, Kings Bldg, Edinburgh EH9 3JZ, Midlothian, Scotland
[5] Univ Cambridge, Cambridge Biomed Res Ctr, Natl Inst Hlth Res, Cambridge, England
[6] Cambridge Univ Hosp, Cambridge, England
[7] Novo Nordisk Res Ctr Oxford, Dept Genet, Oxford, England
基金
英国医学研究理事会;
关键词
GENOME-WIDE ASSOCIATION; INTIMA-MEDIA THICKNESS; LOCI; IDENTIFICATION; STATISTICS; EXPRESSION; VARIANTS; GENOTYPE; SIGNALS;
D O I
10.1038/s41467-020-20885-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Genome-wide association studies (GWAS) have identified thousands of genomic regions affecting complex diseases. The next challenge is to elucidate the causal genes and mechanisms involved. One approach is to use statistical colocalization to assess shared genetic aetiology across multiple related traits (e.g. molecular traits, metabolic pathways and complex diseases) to identify causal pathways, prioritize causal variants and evaluate pleiotropy. We propose HyPrColoc (Hypothesis Prioritisation for multi-trait Colocalization), an efficient deterministic Bayesian algorithm using GWAS summary statistics that can detect colocalization across vast numbers of traits simultaneously (e.g. 100 traits can be jointly analysed in around 1s). We perform a genome-wide multi-trait colocalization analysis of coronary heart disease (CHD) and fourteen related traits, identifying 43 regions in which CHD colocalized with >= 1 trait, including 5 previously unknown CHD loci. Across the 43 loci, we further integrate gene and protein expression quantitative trait loci to identify candidate causal genes. Statistical colocalisation is a method to identify causal genes and shared genetic aetiology across traits. Here, the authors describe HyPrColoc, an efficient Bayesian divisive clustering algorithm which integrates summary statistics from genome-wide association studies to detect clusters of colocalised traits from large numbers of traits.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Identifying Genetic Risk Factors for Alzheimer's Disease via Shared Tree-Guided Feature Learning Across Multiple Tasks
    Zhang, Weizhong
    Luo, Tingjin
    Qiu, Shuang
    Ye, Jieping
    Cai, Deng
    He, Xiaofei
    Wang, Jie
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2018, 30 (11) : 2145 - 2156
  • [2] Expanding the genetic architecture of nicotine dependence and its shared genetics with multiple traits
    Quach, Bryan C.
    Bray, Michael J.
    Gaddis, Nathan C.
    Liu, Mengzhen
    Palviainen, Teemu
    Minica, Camelia C.
    Zellers, Stephanie
    Sherva, Richard
    Aliev, Fazil
    Nothnagel, Michael
    Young, Kendra A.
    Marks, Jesse A.
    Young, Hannah
    Carnes, Megan U.
    Guo, Yuelong
    Waldrop, Alex
    Sey, Nancy Y. A.
    Landi, Maria T.
    McNeil, Daniel W.
    Drichel, Dmitriy
    Farrer, Lindsay A.
    Markunas, Christina A.
    Vink, Jacqueline M.
    Hottenga, Jouke-Jan
    Iacono, William G.
    Kranzler, Henry R.
    Saccone, Nancy L.
    Neale, Michael C.
    Madden, Pamela
    Rietschel, Marcella
    Marazita, Mary L.
    McGue, Matthew
    Won, Hyejung
    Winterer, Georg
    Grucza, Richard
    Dick, Danielle M.
    Gelernter, Joel
    Caporaso, Neil E.
    Baker, Timothy B.
    Boomsma, Dorret I.
    Kaprio, Jaakko
    Hokanson, John E.
    Vrieze, Scott
    Bierut, Laura J.
    Johnson, Eric O.
    Hancock, Dana B.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [3] Integration of genetic risk factors into a clinical algorithm for multiple sclerosis susceptibility: a weighted genetic risk score
    De Jager, Philip L.
    Chibnik, Lori B.
    Cui, Jing
    Reischl, Joachim
    Lehr, Stephan
    Simon, K. Claire
    Aubin, Cristin
    Bauer, David
    Heubach, Juergen F.
    Sandbrink, Rupert
    Tyblova, Michaela
    Lelkova, Petra
    Havrdova, Eva
    Pohl, Christoph
    Horakova, Dana
    Ascherio, Alberto
    Hafler, David A.
    Karlson, Elizabeth W.
    LANCET NEUROLOGY, 2009, 8 (12) : 1111 - 1119
  • [4] The shared genetic landscape of blood cell traits and risk of neurological and psychiatric disorders
    Yang, Yuanhao
    Zhou, Yuan
    Nyholt, Dale R.
    Yap, Chloe X.
    Tannenberg, Rudolph K.
    Wang, Ying
    Wu, Yang
    Zhu, Zhihong
    Taylor, Bruce V.
    Gratten, Jacob
    CELL GENOMICS, 2023, 3 (02):
  • [5] Assessing the evidence for shared genetic risks across psychiatric disorders and traits
    Martin, Joanna
    Taylor, Mark J.
    Lichtenstein, Paul
    PSYCHOLOGICAL MEDICINE, 2018, 48 (11) : 1759 - 1774
  • [6] Shared genetic architecture between neuroticism, coronary artery disease and cardiovascular risk factors
    Torgersen, Kristin
    Bahrami, Shahram
    Frei, Oleksandr
    Shadrin, Alexey
    Connell, Kevin S. O'
    Smeland, Olav B.
    Munkhaugen, John
    Djurovic, Srdjan
    Dammen, Toril
    Andreassen, Ole A.
    TRANSLATIONAL PSYCHIATRY, 2021, 11 (01)
  • [7] Identifying cross-disease components of genetic risk across hospital data in the UK Biobank
    Cortes, Adrian
    Albers, Patrick K.
    Dendrou, Calliope A.
    Fugger, Lars
    McVean, Gil
    NATURE GENETICS, 2020, 52 (01) : 126 - +
  • [8] Shared Genetic Risk Factors of Intracranial, Abdominal, and Thoracic Aneurysms
    van't Hof, Femke N. G.
    Ruigrok, Ynte M.
    Lee, Cue Hyunkyu
    Ripke, Stephan
    Anderson, Graig
    de Andrade, Mariza
    Baas, Annette F.
    Blankensteijn, Jan D.
    Bottinger, Erwin P.
    Bown, Matthew J.
    Broderick, Joseph
    Bijlenga, Philippe
    Carrell, David S.
    Crawford, Dana C.
    Crosslin, David R.
    Ebeling, Christian
    Eriksson, Johan G.
    Fornage, Myriam
    Foroud, Tatiana
    von und zu Fraunberg, Mikael
    Friedrich, Christoph M.
    Gaal, Emilia I.
    Gottesman, Omri
    Guo, Dong-Chuan
    Harrison, Seamus C.
    Hernesniemi, Juha
    Hofman, Albert
    Inoue, Ituro
    Jaaskelainen, Juha E.
    Jones, Gregory T.
    Kiemeney, Lambertus A. L. M.
    Kivisaari, Riku
    Ko, Nerissa
    Koskinen, Seppo
    Kubo, Michiaki
    Kullo, Iftikhar J.
    Kuivaniemi, Helena
    Kurki, Mitja I.
    Laakso, Aki
    Lai, Dongbing
    Leal, Suzanne M.
    Lehto, Hanna
    LeMaire, Scott A.
    Low, Siew-Kee
    Malinowski, Jennifer
    McCarty, Catherine A.
    Milewicz, Dianna M.
    Mosley, Thomas H.
    Nakamura, Yusuke
    Nakaoka, Hirofumi
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2016, 5 (07):
  • [9] shaPRS: Leveraging shared genetic effects across traits or ancestries improves accuracy of polygenic scores
    Kelemen, Martin
    Vigorito, Elena
    Fachal, Laura
    Anderson, Carl A.
    Wallace, Chris
    AMERICAN JOURNAL OF HUMAN GENETICS, 2024, 111 (06) : 1006 - 1017
  • [10] SharePro: an accurate and efficient genetic colocalization method accounting for multiple causal signals
    Zhang, Wenmin
    Lu, Tianyuan
    Sladek, Robert
    Li, Yue
    Najafabadi, Hamed
    Dupuis, Josee
    BIOINFORMATICS, 2024, 40 (05)