Periodic solutions to parameter-dependent equations with a φ-Laplacian type operator

被引:0
作者
Feltrin, Guglielmo [1 ]
Sovrano, Elisa [2 ]
Zanolin, Fabio [1 ]
机构
[1] Univ Udine, Dept Math Comp Sci & Phys, Via Sci 206, I-33100 Udine, Italy
[2] Univ Trieste, Dept Math & Geosci, Ist Nazl Alta Matemat Francesco Severi, Via A Valerio 12-1, I-34127 Trieste, Italy
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2019年 / 26卷 / 05期
关键词
Periodic solutions; Multiplicity results; Ambrosetti-Prodi alternative; Topological degree; phi-Laplacian; SYSTEMS; EXISTENCE;
D O I
10.1007/s00030-019-0585-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the periodic boundary value problem associated with the phi-Laplacian equation of the form (phi(u'))' + f(u)' + g(t, u) = s, where s is a real parameter, f and g are continuous functions, and g is T-periodic in the variable t. The interest is in Ambrosetti-Prodi type alternatives which provide the existence of zero, one or two solutions depending on the choice of the parameter s. We investigate this problem for a broad family of nonlinearities, under non-uniform type conditions on g(t, u) as u -> +/- 8. We generalize, in a unified framework, various classical and recent results on parameter-dependent nonlinear equations.
引用
收藏
页数:27
相关论文
共 27 条