Nonrecursive determination of orthonormal polynomials with matrix formulation

被引:58
作者
Dai, Guang-ming
Mahajan, Virendra N.
机构
[1] AMO Laser Vis Correct Grp, Santa Clara, CA 95051 USA
[2] Aerosp Corp, El Segundo, CA 90245 USA
关键词
D O I
10.1364/OL.32.000074
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A general theoretical approach has been developed for the determination of orthonormal polynomials over any integrable domain, such as a hexagon. This approach is better than the classical Gram-Schmidt orthogonalization process because it is nonrecursvie and can be performed rapidly with matrix transformations. The determination of the orthomormal hexagonal polynomials is demonstrated as an example of the matrix approach. (c) 2006 Optical Society of America
引用
收藏
页码:74 / 76
页数:3
相关论文
共 9 条
[1]  
Bjorck A., 1996, NUMERICAL METHODS LE, DOI DOI 10.1137/1.9781611971484
[2]  
Bjorck A., 1967, BIT, V7, P1, DOI DOI 10.1007/BF01934122
[3]  
BORN M, 1999, PRINCIPLES OPTICS, pCH9
[4]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[5]   ORTHOGONALIZATION PROCESS BY RECURRENCE RELATIONS [J].
LEE, MH .
PHYSICAL REVIEW LETTERS, 1982, 49 (15) :1072-1075
[6]   Orthonormal polynomials for hexagonal pupils [J].
Mahajan, Virendra N. ;
Dai, Guang-ming .
OPTICS LETTERS, 2006, 31 (16) :2462-2464
[7]  
MAHAJAN VN, 2004, OPTICAL IMAGIN ABE 2, pCH5
[8]   ZERNIKE POLYNOMIALS AND ATMOSPHERIC-TURBULENCE [J].
NOLL, RJ .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1976, 66 (03) :207-211
[9]   ABERRATION BALANCING IN ROTATIONALLY SYMMETRIC LENSES [J].
TATIAN, B .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1974, 64 (08) :1083-1091