Machine Learning for Causal Inference: On the Use of Cross-fit Estimators

被引:52
作者
Zivich, Paul N. [1 ,2 ]
Breskin, Alexander [3 ]
机构
[1] Univ N Carolina, Gillings Sch Global Publ Hlth, Dept Epidemiol, Chapel Hill, NC 27516 USA
[2] Univ N Carolina, Carolina Populat Ctr, Chapel Hill, NC 27516 USA
[3] NoviSci, Durham, NC USA
基金
美国国家卫生研究院;
关键词
Causal inference; Epidemiologic methods; Machine learning; Observational studies; Super-learner; DOUBLY ROBUST ESTIMATION; PROPENSITY SCORE; ORDER; POPULATION; POSITIVITY; NETWORKS; MODELS; TIME;
D O I
10.1097/EDE.0000000000001332
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background: Modern causal inference methods allow machine learning to be used to weaken parametric modeling assumptions. However, the use of machine learning may result in complications for inference. Doubly robust cross-fit estimators have been proposed to yield better statistical properties. Methods: We conducted a simulation study to assess the performance of several different estimators for the average causal effect. The data generating mechanisms for the simulated treatment and outcome included log-transforms, polynomial terms, and discontinuities. We compared singly robust estimators (g-computation, inverse probability weighting) and doubly robust estimators (augmented inverse probability weighting, targeted maximum likelihood estimation). We estimated nuisance functions with parametric models and ensemble machine learning separately. We further assessed doubly robust cross-fit estimators. Results: With correctly specified parametric models, all of the estimators were unbiased and confidence intervals achieved nominal coverage. When used with machine learning, the doubly robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage. Conclusions: Due to the difficulty of properly specifying parametric models in high-dimensional data, doubly robust estimators with ensemble learning and cross-fitting may be the preferred approach for estimation of the average causal effect in most epidemiologic studies. However, these approaches may require larger sample sizes to avoid finite-sample issues.
引用
收藏
页码:393 / 401
页数:9
相关论文
共 45 条
[31]  
Robins J., 2008, Probability and statistics: essays in honor of David A. Freedman, V2, P335, DOI DOI 10.1214/193940307000000527
[32]   Mortality Risk Score Prediction in an Elderly Population Using Machine Learning [J].
Rose, Sherri .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2013, 177 (05) :443-452
[33]  
Rose S, 2011, SPRINGER SER STAT, P3, DOI 10.1007/978-1-4419-9782-1
[34]   Parametric assumptions equate to hidden observations: comparing the efficiency of nonparametric and parametric models for estimating time to AIDS or death in a cohort of HIV-positive women [J].
Rudolph, Jacqueline E. ;
Cole, Stephen R. ;
Edwards, Jessie K. .
BMC MEDICAL RESEARCH METHODOLOGY, 2018, 18
[35]   National Trends in Statin Use and Expenditures in the US Adult Population From 2002 to 2013 Insights From the Medical Expenditure Panel Survey [J].
Salami, Joseph A. ;
Warraich, Haider ;
Valero-Elizondo, Javier ;
Spatz, Erica S. ;
Desai, Nihar R. ;
Rana, Jamal S. ;
Virani, Salim S. ;
Blankstein, Ron ;
Khera, Amit ;
Blaha, Michael J. ;
Blumenthal, Roger S. ;
Lloyd-Jones, Donald ;
Nasir, Khurram .
JAMA CARDIOLOGY, 2017, 2 (01) :56-65
[36]   Targeted Maximum Likelihood Estimation for Causal Inference in Observational Studies [J].
Schuler, Megan S. ;
Rose, Sherri .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2017, 185 (01) :65-73
[37]   Implementation of G-Computation on a Simulated Data Set: Demonstration of a Causal Inference Technique [J].
Snowden, Jonathan M. ;
Rose, Sherri ;
Mortimer, Kathleen M. .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2011, 173 (07) :731-738
[38]   Super learner [J].
van der Laan, Mark J. ;
Polley, Eric C. ;
Hubbard, Alan E. .
STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2007, 6
[39]   Higher Order Tangent Spaces and Influence Functions [J].
van der Vaart, Aad .
STATISTICAL SCIENCE, 2014, 29 (04) :679-686
[40]   An Empirical Comparison of Tree-Based Methods for Propensity Score Estimation [J].
Watkins, Stephanie ;
Jonsson-Funk, Michele ;
Brookhart, M. Alan ;
Rosenberg, Steven A. ;
O'Shea, T. Michael ;
Daniels, Julie .
HEALTH SERVICES RESEARCH, 2013, 48 (05) :1798-1817