Correlating yeast cell stress physiology to changes in the cell surface morphology: Atomic force microscopic studies

被引:10
|
作者
Canetta, Elisabetta
Walker, Graeme M.
Adya, Ashok K.
机构
[1] Univ Abertay Dundee, Condensed Matter Grp, Sch Contemporary Sci, Dundee DD1 1HG, Scotland
[2] Univ Abertay Dundee, BIONTH Bio & Nano Technol Hlth, Sch Contemporary Sci, Dundee DD1 1HG, Scotland
[3] Univ Abertay Dundee, Abertay Ctr Environm, Sch Contemporary Sci, Dundee DD1 1HG, Scotland
来源
THESCIENTIFICWORLDJOURNAL | 2006年 / 6卷
关键词
atomic force microscopy; AFM; microbiology; environmental stress; yeasts; morphology; Saccharomyces cerevisiae; Schizosaccharomyces pombe;
D O I
10.1100/tsw.2006.166
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Atomic Force Microscopy (AFM) has emerged as a powerful biophysical tool in biotechnology and medicine to investigate the morphological, physical, and mechanical properties of yeasts and other biological systems. However, properties such as, yeasts' response to environmental stresses, metabolic activities of pathogenic yeasts, cell-cell/cell-substrate adhesion, and cell-flocculation have rarely been investigated so far by using biophysical tools. Our recent results obtained by AFM on one strain each of Saccharomyces cerevisiae and Schizosaccharomyces pombe show a clear correlation between the physiology of environmentally stressed yeasts and the changes in their surface morphology. The future directions of the AFM related techniques in relation to yeasts are also discussed.
引用
收藏
页码:777 / 780
页数:4
相关论文
共 50 条
  • [21] Atomic force microscopic study of variations in the surface morphology of porous silica upon thermal treatment
    Shevkina, A. Yu
    Sosnov, E. A.
    Malygin, A. A.
    COLLOID JOURNAL, 2012, 74 (03) : 380 - 385
  • [22] Surface morphology studies of in situ polycondensation microcomposites using atomic force microscopy
    F. Tian
    C. Wang
    Z. Lin
    J.W. Li
    C.L. Bai
    Applied Physics A, 1998, 66 : S591 - S596
  • [23] Cell Surface Parameters for Accessing Neutrophil Activation Level with Atomic Force Microscopy
    Tilinova, Oksana M.
    Inozemtsev, Vladimir
    Sherstyukova, Ekaterina
    Kandrashina, Snezhanna
    Pisarev, Mikhail
    Grechko, Andrey
    Vorobjeva, Nina
    Sergunova, Viktoria
    Dokukin, Maxim E.
    CELLS, 2024, 13 (04)
  • [24] Atomic force microscopy studies on the surface morphology of {111} tabular AgBr crystals
    Plomp, M
    Buijnsters, JG
    Bögels, G
    van Enckevort, WJP
    Bollen, D
    JOURNAL OF CRYSTAL GROWTH, 2000, 209 (04) : 911 - 923
  • [25] In situ atomic force microscopy studies of growth mechanisms and surface morphology of zinc thiourea sulfate crystals
    Song, Jie
    Li, Mingwei
    Cao, Yachao
    Yin, Huawei
    CRYSTAL RESEARCH AND TECHNOLOGY, 2015, 50 (11) : 828 - 839
  • [26] The effect of uranium on bacterial viability and cell surface morphology using atomic force microscopy in the presence of bicarbonate ions
    Sepulveda-Medina, Paola
    Katsenovich, Yelena
    Musaramthota, Vishal
    Lee, Michelle
    Lee, Brady
    Dua, Rupak
    Lagos, Leonel
    RESEARCH IN MICROBIOLOGY, 2015, 166 (05) : 419 - 427
  • [27] Atomic Force Microscopy: A Versatile Tool for Studying Cell Morphology, Adhesion and Mechanics
    Franz, C. M.
    Puech, P. -H.
    CELLULAR AND MOLECULAR BIOENGINEERING, 2008, 1 (04) : 289 - 300
  • [28] Atomic Force Microscopy: A Versatile Tool for Studying Cell Morphology, Adhesion and Mechanics
    C. M. Franz
    P.-H. Puech
    Cellular and Molecular Bioengineering, 2008, 1 : 289 - 300
  • [29] Indentation with atomic force microscope, Saccharomyces cerevisiae cell gains elasticity under ethanol stress
    Niu, Yuan-Pu
    Lin, Xiang-Hua
    Dong, Shi-Jun
    Yuan, Qi-Peng
    Li, Hao
    INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2016, 79 : 337 - 344
  • [30] Investigating biomolecular recognition at the cell surface using atomic force microscopy
    Wang, Congzhou
    Yadavalli, Vamsi K.
    MICRON, 2014, 60 : 5 - 17