Fuzzy inventory with backorder for fuzzy total demand based on interval-valued fuzzy set

被引:41
作者
Yao, JS [1 ]
Su, JS [1 ]
机构
[1] Chinese Culture Univ, Dept Appl Math, Taipei, Taiwan
关键词
fuzzy inventory; interval-valued fuzzy set; triangular fuzzy number; fuzzy total demand;
D O I
10.1016/S0377-2217(99)00177-0
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
It is difficult to determine the fixed total demand r(0) in an inventory problem with backorder in a whole plan period. We will fuzzify it as R = [near r(0)] In this article, we will classify R into three kinds: (1) fuzzy total demand with triangular fuzzy number (Section 2), (2) fuzzy total demand with interval-valued fuzzy set based on two triangular fuzzy numbers (Section 3), (3) fuzzy total demand with interval-valued fuzzy set based on two trapezoidal fuzzy numbers (Section 4). We will find the corresponding order quantities and the shortage inventories, respectively. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:390 / 408
页数:19
相关论文
共 50 条
[21]   Robustness of interval-valued fuzzy inference [J].
Li, De-chao ;
Li, Yong-ming ;
Xie, Yong-jian .
INFORMATION SCIENCES, 2011, 181 (20) :4754-4764
[22]   Specificity for interval-valued fuzzy sets [J].
Gonzalez-del-Campo, Ramon ;
Garmendia, L. ;
Yager, Ronald R. .
2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
[23]   Indicator of inclusion grade for interval-valued fuzzy sets. Application to approximate reasoning based on interval-valued fuzzy sets [J].
Bustince, H .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2000, 23 (03) :137-209
[24]   Specificity for interval-valued fuzzy sets [J].
Gonzalez-del-Campo, Ramon ;
Garmendia, Luis ;
Yager, Ronald R. .
INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2012, 5 (03) :452-459
[25]   INTERVAL-VALUED FUZZY GROUP CONGRUENCES [J].
Lee, Jeong Gon ;
Hur, Kul ;
Lim, Pyung Ki .
HONAM MATHEMATICAL JOURNAL, 2016, 38 (02) :403-423
[26]   Uninorms on Interval-Valued Fuzzy Sets [J].
Kalina, Martin ;
Kral, Pavol .
INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS, IPMU 2016, PT II, 2016, 611 :522-531
[27]   A New Approach to Interval-Valued Choquet Integrals and the Problem of Ordering in Interval-Valued Fuzzy Set Applications [J].
Bustince, Humberto ;
Galar, Mikel ;
Bedregal, Benjamin ;
Kolesarova, Anna ;
Mesiar, Radko .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2013, 21 (06) :1150-1162
[28]   THE INTERVAL-VALUED FUZZY SETS BASED ON FLOU SETS [J].
Li, Hong-Xia ;
Liu, Kun ;
Gong, Zeng-Tai .
PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, :223-228
[29]   Interval-Valued Fuzzy c-Means Algorithm and Interval-Valued Density-Based Fuzzy c-Means Algorithm [J].
Varshney, Ayush K. ;
Mehra, Priyanka ;
Muhuri, Pranab K. ;
Lohani, Q. M. Danish .
2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,
[30]   Fuzzy inventory with backorder for fuzzy order quantity and fuzzy shortage quantity [J].
Wu, KM ;
Yao, JS .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2003, 150 (02) :320-352