Solving TSP by using Lotka-Volterra neural networks

被引:11
|
作者
Li, Manli [1 ]
Yi, Zhang [2 ]
Zhu, Min [2 ]
机构
[1] Univ Elect Sci & Technol China, Computat Intelligence Lab, Sch Engn & Comp Sci, Chengdu 610054, Peoples R China
[2] Sichuan Univ, Coll Comp Sci, Machine Intelligence Lab, Chengdu 610065, Peoples R China
关键词
Neural networks; Lotka-Volterra neural networks; Traveling salesman problem; STABILITY CONDITIONS; FEATURE BINDING; LOCAL MINIMA; MODEL;
D O I
10.1016/j.neucom.2009.05.002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new approach to solve traveling salesman problem (TSP) by using a class of Lotka-Volterra neural networks (LVNN) with global inhibition. Some stability criteria that ensure the convergence of valid solutions are obtained. It is proved that an equilibrium state is stable if and only if it corresponds to a valid solution of the TSP. Thus, a valid solution can always be obtained whenever the network convergence to a stable state. A set of analytical conditions for optimal settings of LVNN is derived. Simulation results illustrate the theoretical analysis. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:3873 / 3880
页数:8
相关论文
共 50 条
  • [41] GENERALIZATION OF LOTKA-VOLTERRA EQUATION
    NAZARENKO, VG
    BIOFIZIKA, 1976, 21 (01): : 172 - 177
  • [42] On the Nonautonomous Lotka-Volterra System
    De Luca, R.
    Rionero, S.
    NEW TRENDS IN FLUID AND SOLID MODELS, 2010, : 49 - 55
  • [43] ON A NEUTRAL LOTKA-VOLTERRA SYSTEM
    GOPALSAMY, K
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1992, 15 (01) : 11 - 21
  • [44] Derivations of Lotka-Volterra algebras
    Gutierrez Fernandez, Juan C.
    Garcia, Claudia I.
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 (01): : 292 - 304
  • [45] On generalized Lotka-Volterra lattices
    Dimakis, A
    Müller-Hoissen, F
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2002, 52 (11) : 1187 - 1193
  • [46] Optimal Parametric Iteration Method for Solving Multispecies Lotka-Volterra Equations
    Marinca, Vasile
    Herisanu, Nicolae
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012
  • [47] Extinction in the Lotka-Volterra model
    Parker, Matthew
    Kamenev, Alex
    PHYSICAL REVIEW E, 2009, 80 (02):
  • [48] Stochastic Lotka-Volterra system
    Dimentberg, MF
    IUTAM SYMPOSIUM ON NONLINEAR STOCHASTIC DYNAMICS, 2003, 110 : 307 - 317
  • [49] Integrable Lotka-Volterra systems
    Bogoyavlenskij, O. I.
    REGULAR & CHAOTIC DYNAMICS, 2008, 13 (06): : 543 - 556
  • [50] Derivations of Lotka-Volterra algebras
    Juan C. Gutierrez Fernandez
    Claudia I. Garcia
    São Paulo Journal of Mathematical Sciences, 2019, 13 : 292 - 304