Simulation and stability analysis of impacting systems with complete chattering

被引:74
作者
Nordmark, Arne B. [2 ]
Piiroinen, Petri T. [1 ]
机构
[1] Natl Univ Ireland, Dept Appl Math, Sch Math Stat & Appl Math, Galway, Ireland
[2] Royal Inst Technol, Dept Mech, S-10044 Stockholm, Sweden
关键词
Nonlinear dynamics; Impacting systems; Chattering; Stability analysis; Bifurcations; Discontinuity mappings; Numerical methods; Simulation; BIFURCATIONS;
D O I
10.1007/s11071-008-9463-y
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper considers dynamical systems that are derived from mechanical systems with impacts. In particular we will focus on chattering-accumulation of impacts-for which local discontinuity mappings will be derived. We will first show how to use these mappings in simulation schemes, and secondly how the mappings are used to calculate the stability of limit cycles with chattering by solving the first variational equations.
引用
收藏
页码:85 / 106
页数:22
相关论文
共 38 条
[1]  
[Anonymous], 2001, LECT NOTES APPL MECH
[2]  
[Anonymous], 2004, DYNAMICS BIFURCATION
[3]  
[Anonymous], 1974, CSAV ACTA TECHNICA
[4]  
Ascher U.M., 1998, Computer methods for ordinary differential equations and differential-algebraic equations, V61, DOI DOI 10.1137/1.9781611971392
[5]  
BEYN W.-J., 2002, Handbook of Dynamical Systems, volume 2 of Handbook of Dynamical Systems, P149, DOI [DOI 10.1016/S1874-575X(02)80025-X, 10.1016/ S1874-575X(02)80025-X, 10.1016/S1874-575X(02)80025-X]
[7]  
BROGLIATO B, 2000, LECT NOTES PHYS, V551
[8]   CHATTERING AND RELATED BEHAVIOR IN IMPACT OSCILLATORS [J].
BUDD, C ;
DUX, F .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1994, 347 (1683) :365-389
[9]   Corner bifurcations in non-smoothly forced impact oscillators [J].
Budd, Chris J. ;
Piiroinen, Petri T. .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 220 (02) :127-145
[10]   Sliding bifurcations of equilibria in planar variable structure systems [J].
Cunha, FB ;
Pagano, DJ ;
Moreno, UF .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2003, 50 (08) :1129-1134